2018

MATHEMATICS

(Major)

Paper: 6.2

(Numerical Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions:

 $1 \times 7 = 7$

- (a) What do you mean by 'normalized floating point representation' of real numbers?
- (b) Define 'round-off' error.
- (c) Write down the approximate representation of $\frac{2}{3}$ correct to four significant figures and find the absolute error.

- (d) Give the relationship between the operators E and Δ.
- (e) Evaluate $E^2 x^2$ when h = 2.
- (f) Show that $E \nabla \equiv \nabla E \equiv \Delta$.
- (g) Write the general quadrature formula in numerical integration.
- 2. Answer the following questions:

 $2 \times 4 = 8$

- (a) Explain briefly the importance of numerical differentiation method.
- (b) Determine the number of significant figures in 8·1205 given its absolute error as 0·3×10⁻².
- (c) Evaluate:

$$\left(\frac{\Delta^2}{E}\right)x^3$$

(d) Write the numerical differentiation formulae for finding the first and second derivatives of a function f(x) at a point x near the beginning of a given set of tabulated values.

3. Answer the following questions:

5×3=15

- (a) Find the absolute, relative and percentage error when $\frac{3}{7}$ is approximated by 0.4286.
- (b) Using the method of separation of symbols, prove that

$$u_x = u_{x-1} + \Delta u_{x-2} + \Delta^2 u_{x-3} + \cdots + \Delta^{n-1} u_{x-n} + \Delta^n u_{x-n}$$

where $u_{x+h} = E^h u_x$.

Or

In an examination, the number of candidates who obtained marks between certain limits were as follows:

Marks	No. of candidates
0–19	41
20-39	62
40-59	65
60-79	50
80-99	17

Find the number of candidates who obtained less than 70 marks using a suitable interpolation formula.

(c) Find the polynomial of the lowest possible degree which assumes the values 3, 12, 15, -21 when x takes the values 3, 2, 1, -1 respectively.

Or

Construct Lagrange's interpolating polynomial using the following data:

x: 40 45 50 55 y = f(x): 15·22 13·99 12·62 11·13

4. Answer any one part :

- (a) (i) Given $u_{20} = 24$, $u_{24} = 32$, $u_{28} = 35$, $u_{32} = 40$, find u_{25} by Bessel's formula.
 - (ii) Find f'(4) and f''(4) from the following data:

x: 1 2 4 8 10 f(x): 0 1 5 21 27

5+5=10

(b) (i) Use Stirling's formula to find a polynomial of degree three or less which takes the following values of the function u_x :

x : 4 6 8 10 $t_x : 1 3 8 20$

(ii) Find the value of

$$\int_0^1 \frac{x^2}{1+x^3} dx$$

using Simpson's $\frac{1}{3}$ rd rule, dividing the range into four equal parts. 5+5=10

5. Answer any one part :

(a) (i) Evaluate

$$\int_{4}^{5.2} \log_e x \, dx$$

by Weddle's rule. Also compute the error.

(ii) Derive Simpson's $\frac{1}{3}$ rd rule from Newton-Cotes quadrature formula. 5+5=10

(b) (i) A curve is drawn to pass through the points given by the following table:

x: 1 1.5 2 2.5 3 3.5 4 y: 2 2.4 2.7 2.8 3 2.6 2.1

Estimate the area bounded by the curve, the x-axis and the lines x = 1 and x = 4.

(ii) The following table gives the values of acceleration f of a particle in cm/sec² at equal interval of time t in sec.

t: 0.0 0.5 1.0 1.5 2.0 f: 0.3989 0.3521 0.2420 0.1295 0.0540 Find the velocity of the particle at t=2 sec. 5+5=10

6. Answer any one part:

- (a) (i) Derive the rate of convergence of the secant method.
 - (ii) Use Newton-Raphson method to find a positive root of the equation $e^x 3x = 0$ correct to four decimal places. 5+5=10
- (b) (i) Find an approximate real root of the equation $x^3 x 1 = 0$ using bisection method. Perform four iterations.
 - (ii) Using Regula-Falsi method, find the approximate real root of the equation

 $x\log_{10}x-1\cdot 2=0$

correct to five decimal places. 5+5=10

