2019

MATHEMATICS

(Major)

Paper: 5.6

(Optimization Theory)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed: $1 \times 7 = 7$

(a) If all the constraints are ≥ inequalities in a linear programming problem whose objective function is to be maximized, then the solution of the problem is unbounded.

(State True or False)

- (b) If two constraints do not intersect in the positive quadrant of the graph, then
- (i) the problem is infeasible
- (ii) the solution is unbounded
 - (iii) one of the constrains is redundant
 - (iv) None of the above

(Choose the correct option) .

- (c) Define convex set.
- (d) The solution to a transportation problem with m rows and n columns is feasible, if number of positive allocations is
 - (i) m+n
 - $(\ddot{\mathbf{u}}) \ m \times n$
 - (iii) m+n-1
 - (iv) m+n+1

(Choose the correct option)

(e) Any two isoprofit or isocost lines for a general LPP are perpendicular to each other.

(State True or False)

- (f) A maximization assignment problem is transformed into a minimization problem by
 - (i) adding each entry in a column with the maximum value in that column
 - (ii) subtracting each entry in a column from the maximum value in that column
 - (iii) subtracting each entry in a column from the maximum value in that table
 - (iv) None of the above

(Choose the correct option)

(g) In a linear programming, all relationships among the decision variables are

(Fill in the blank)

2. Answer the following questions:

- (a) Define slack and surplus variables in an LPP. 1+1=2
- (b) Define convex hull of a given set $S \subseteq \mathbb{R}^n$. Graph the convex hull of the points (0, 0), (0, 1), (1, 2) and (4, 0). 1+1=2
- (c) What are the characteristics of the standard form of an LPP?
- (d) Prove that the intersection of two convex sets is also a convex set.
- 3. Answer any three of the following questions:

5×3=15

2

(a) An electric company produces two products P₁ and P₂. Products are produced and sold on a weekly basis. The weekly production cannot exceed 25 for product P₁ and 35 for product P₂ because of limited available facilities. The company employs total of 60 workers. Product P₁ requires 2 man-

weeks of labour, while P_2 requires one man-week of labour. Profit margin on P_1 is $\stackrel{?}{\sim} 60$ and on P_2 is $\stackrel{?}{\sim} 40$.

Formulate this problem as an LPP.

- (b) Prove that if the i-th constraint in the primal is an equality, then the i-th dual variable is unrestricted in sign.
- (c) Prove that a necessary and sufficient condition for the existence of a feasible solution to a transportation problem is that the total capacity (or supply) must be equal to the total requirement (or demand).
- (d) Use the graphical method to solve the following LPP:

Maximize $Z = 300x_1 + 400x_2$ subject to the constraints

$$5x_1 + 4x_2 \le 200$$

$$3x_1 + 5x_2 \le 150$$

$$5x_1 + 4x_2 \ge 100$$

$$8x_1 + 4x_2 \ge 80$$
and
$$x_1, x_2 \ge 0$$

(e) Obtain all the basic solutions to the following system of linear equations:

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + x_2 + 5x_3 = 5$$

4. Solve the following LPP by simplex method:

10

Maximize $Z = 16x_1 + 17x_2 + 10x_3$ subject to the constraints

 $x_1 + x_2 + 4x_3 \le 2000$ $2x_1 + x_2 + x_3 \le 3600$ $x_1 + 2x_2 + 2x_3 \le 2400$ $x_1 \le 30$

and $x_1, x_2, x_3 \ge 0$

Or

Use Big-M method to solve the following LP problem:

Minimize $Z = 5x_1 + 3x_2$ subject to the constraints

 $2x_1 + 4x_2 \le 12$ $2x_1 + 2x_2 = 10$ $5x_1 + 2x_2 \ge 10$ $x_1, x_2 \ge 0$

and

5. Show that the dual of the dual is the primal.
Obtain the dual LP problem of the following primal LP problem:
5+5=10

Minimize $Z = x_1 + 2x_2$ subject to the constraints

 $2x_1 + 4x_2 \le 160$ $x_1 - x_2 = 30$ $x_1 \ge 10$

and $x_1, x_2 \ge 0$

Or

State and prove the fundamental duality theorem. 2+8=10

6. A company has three production facilities S_1 , S_2 and S_3 with production capacity of 7, 9 and 18 units per week of a product respectively. These units are to be shipped to four warehouses D_1 , D_2 , D_3 and D_4 with requirement of 5, 8, 7 and 14 units per week respectively. The transportation costs (in \ref{S}) per unit between the factories to warehouses are given in the table below:

	$D_{\mathbf{l}}$	D ₂	D ₃	D ₄	Supply (Availability)
S _l	19	30	50	10	7
S_2	70	30	40	60	9
s_3	40	8	70	20	18
Demand (Requirement)	5	8	7	14	34

Formulate this transportation problem as a linear programming model to minimize the total transportation cost. Use North-West corner method to find an initial basic feasible solution to the above transportation problem.

Or

A department of a company has five employees with five jobs to be performed. The time (in hours) that each man takes to perform each job is given in the following effectiveness matrix:

	I	П	Ш	<i>IV</i>	\boldsymbol{v}
Α	10	5	13	15	16
В	3	9	18	13	6
C	10	7	2	2	2
D	7	11	9	7	12
E	7	9	10	4	12

How should the jobs be allocated, one per employee, so as to minimize the total man-hours?

