2019

CHEMISTRY

(Major)

Paper : 5.2

(Physical Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions in brief: 1×7=7
 - (a) Give the degrees of freedom of a solution of acetic acid in water.

the care a micercul bear to be at colling

(b) When 100 numbers of photons are absorbed by a reacting system, 10⁵ numbers of molecules of a reactant are converted into products. What is the quantum yield of the reaction?

- (c) Ice and water-phase diagram has negative slope. Explain.
- (d) Give the signs of ΔH and ΔS in an adsorption process.
- (e) In many reactions, the entropy change of activation is negative. Explain the reason.
- (f) Draw the graph representing the variation of chemical potentials of ice and water with temperature.
- (g) State the Stark-Einstein law of photochemical equivalence.

THE REPORT OF THE PROPERTY OF THE PARTY OF T

2. Answer the following questions:

2×4=8

- (a) Using the Clausius-Clapeyron equation, explain the nature of variation of vapour pressures with temperature.
- (b) Write down the Eyring equation and give the meanings of the terms involved in the equation.

(c) The quantum efficiency for the

$$H_2(g) + Cl_2(g) \xrightarrow{hv} 2HCl(g)$$

is 1.0×10^6 with a wavelength of 480 nm. Calculate the number of moles of HCl formed per joule of radiant energy absorbed.

- (d) The volume of nitrogen gas required to cover a sample of silica gel with monomolecular layer is 0·129 dm³ per gm of the gel at 1 atm and 273 K. If each nitrogen molecule occupies 1·62×10⁻¹⁹ m² area, calculate the surface area of the gel.
- 3. Answer any *three* of the following questions: 5×3=15
- (a) Discuss the effect of ionic strength on the rate constant of an uncatalyzed ionic reaction.
 - (b) Write the postulates of hard-sphere collision theory. Using this theory, deduce the expression of rate constant for a bimolecular gas-phase reaction.

ROTKOL I THE IN CHES HOLD SUCCESS

2+3=5

(Turn Over)

- (c) Derive an expression for Langmuir unimolecular adsorption isotherm.

 Under what conditions does it reduce to Freundlich adsorption isotherm? 3+2=5
 - (d) Define fugacity. For a mixture of ideal gases at constant temperature and pressure, show that

 $\Delta G_{\rm mix} = nRT \Sigma x_i \ln x_i$

where the terms have their usual 1+4=5 meanings.

I. Answer any *two* of the following questions: $5\times2=10$

wate his Aci wa

- (a) Write the mechanism of the H₂—Cl₂ photochemical reaction. Prove that the rate of formation of HCl is directly proportional to the intensity of the absorbed radiation. 2+3=5
 - (b) Draw the phase diagram representing schematically each of the following:
 - (i) $H_2O(1) \rightleftharpoons H_2O(v)$
 - (ii) A temperature-composition phase diagram for binary system having a eutectic mixture

(iii) A temperature-composition phase diagram for a binary system having a congruent melting point

Why a eutectic mixture cannot be separated by using simple distillation? $1+1\frac{1}{2}+1\frac{1}{2}+1=5$

(c) Write the Lindemann's mechanism of unimolecular reaction. Using this mechanism, deduce an expression for the rate of the unimolecular reaction.

on the late of the street whereath

2+3=5

5. Answer either (a) and (b) or (c) and (d):

the holp at the potential energy survice, how can rais explain the different outpe 5×2=10

(a) Define chemical potential and give its physical interpretation. How does chemical potential change with the change of compositions of a system?

2+3=5

In the photochemical decomposition of acetone using 313 nm radiation, 7.57×10⁻⁶ moles of CO is formed in 20 minutes. If the energy of radiation absorbed corresponds to 2.41×10⁻³ J s⁻¹, calculate the quantum efficiency for the formation of CO.

5 ·

(0)	What	is	surface	excess?	Derive	the
(4)	Gibbs' equation of			surface ex	excess.	1+4=5

(d) Derive the BET equation.

5

- **6.** Answer any *two* of the following questions: $5\times2=10$
 - (a) Discuss the mechanism of hydrogenation of ethene using Ni catalyst.

 Also discuss the effect of surface area on the rate of the above reaction. 3+2=5
- (b) Using ACT, derive the thermodynamic formulation of rate constant for a bimolecular gas-phase reaction.

TALLS TEXALS CONCESS OF THE

5

- (c) What is potential energy surface? With the help of the potential energy surface, how can you explain the different paths of a chemical reaction? Explain with an example.

 1+4=5
 - (d) (i) Using hard-sphere collision theory expression of rate constant of a bimolecular gas-phase reaction, deduce the Arrhenius factor.

(ii) The hard-sphere diameters of O₂ and CO molecules are found to be 3.6 Å and 3.7 Å. Calculate the hard-sphere collision theory frequency factor for the bimolecular gas phase reaction between O₂ and CO at 2700 K.
