CHAPTER-4 Functions with fuzzy γ -closed graphs and fuzzy γ -separations axioms.

4.1. Introduction:

Literature servey has revealed that with the help of a certain operation γ on topological space (X,T), Kasahara introduced the concept of γ -closed graph and Jankovic investigated some properties of functions with γ -closed graphs. Furthermore, Ogata studied some new separation axioms γ - T_i , $i = 1, \frac{1}{2}, 2$. In this chapter, we define and study the above concepts with the help of q-coincidence in a fuzzy setting.

In the section 2, we have defined fuzzy γ -closed graphs, fuzzy γ -subcontinuity and then established their various properties.

In section 3, we have introduce and studied the concepts of fuzzy locally γ -closed function and particularly, fuzzy locally closed, fuzzy locally θ -closed and fuzzy locally δ -closed function. Then we have developed the notions of fuzzy γ -closed (fuzzy almost γ -closed) functions and generalized the concepts of fuzzy closed (almost-closed), fuzzy θ -closed(fuzzy almost θ -closed) and fuzzy δ -closed (fuzzy almost δ -closed) function. Attempts are also made to obtain some properties of said types of functions with fuzzy γ closed graphs, fuzzy γ -continuity and fuzzy γ -compactness. Furthermore, using the fuzzy γ -open sets, some new separation axioms namely fuzzy γ - T_i spaces and some topological properties on them are presented in last section of this chapter.

4.2. Fuzzy γ -closed graphs and its properties

Definition 4.2.1: Let (X,T) and (Y,T') be two fts and γ an operation on T'. The graph G(f) of function $f: X \to Y$ is said to be γ -closed iff for each fuzzy point $(P_x^{\lambda}, P_y^{r}) \in X \times Y - G(f)$, there exists open Q-nbds U and V of P_x^{λ} and P_y^{r} respectively such that $U \times \gamma(V) \cap G(f) = \emptyset$

Examples 4.2.2 :

(i) If γ is identity operation, then fuzzy γ -closedness of a graph is identical with the closedness of the graph.

(ii) γ is closure operation, then the fuzzy γ -closed graph G(f) is called fuzzy strongclosed graphs.

Lemma 4.2.3: A graph G(f) of a function $f: X \to Y$ is fuzzy γ -closed in $X \times Y$ if and only for each $(P_x^{\lambda}, P_y^{r}) \in X \times Y - G(f)$, there exists open Q-nbds U and V of P_x^{λ} and P_y^{r} such that $\gamma(V) \overline{q} f(U)$

Theorem 4.2.4: Let f be mapping from fuzzy topological space (X,T) into another fts (Y,T') and γ an operation on T'. Then for the following statements (1) - (3), the implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ hold. Further if γ is regular then (1), (2), (3) are equivalent to each other.

(1) f has fuzzy γ -closed graph

(2) If there exists a fuzzy filter base Φ in X converging to $P_x^{\lambda} \in S(X)$ such that $f(\Phi)$ fuzzy γ -accumulates to $p_y^r \in S(Y)$, then $f(p_x^{\lambda}) = p_y^r$.

(3) If there exists a filter base Φ in X converging to $P_x^{\lambda} \in S(X)$ such that $f(\Phi)$ fuzzy γ -converges to $p_y^r \in S(Y)$, then $f(P_x^{\lambda}) = P_y^r$.

Proof: (1) \Rightarrow (2), If possible suppose $f(P_x^{\lambda}) \neq P_y^r$. Then $(P_x^{\lambda}, P_y^r) \in (X \times Y) - G(f)$. Since G(f) is fuzzy γ -closed graph, there exists open Q-neighbourhood U and V of P_x^{λ} and P_y^r respectively such that $\gamma(V)\overline{q}f(U)$. Also $\Phi \to P_x^{\lambda} \in S(X)$, so $F \subseteq U$ for some $F \in \Phi$ and then we have $f(F) \subseteq f(U)$. Moreover, $f(\Phi)$ fuzzy γ -accumulates to $P_y^r \in S(Y)$, therefore we have $\gamma(V)qf(F)$. Thus $\gamma(V)qf(U)$, a contradiction.

(2) \Rightarrow (3) Let there exists a filter base Φ in X converging to $P_x^{\lambda} \in S(X)$ such that $f(\Phi)$ fuzzy γ -converges to $P_y^r \in S(Y)$. Then $f(\Phi)$ fuzzy γ -accumulates to P_y^r . Thus, there exists a filter base Φ in X converging to P_x^{λ} such that $f(\Phi)$ fuzzy γ -accumulates to P_y^r . Therefore by assumption $f(P_x^{\lambda}) = P_y^r$.

Assume now that γ is regular. It suffices to show that (3) \Rightarrow (1). Suppose that (1) does not hold. Then there exists a $(P_x^{\lambda}, P_y^{r}) \in (X \times Y) - G(f)$ such that $\gamma(V)qf(U)$ for every open Q-neighbourhood U and V of P_x^{λ} and P_y^{r} . Consider $\Phi = \{U \cap f^{-1}(\gamma(V))\}$. If A_1 , $A_2 \in \Phi$ then for $U_1, U_2 \in N^{\mathcal{Q}}(p_x^{\lambda})$ and $V_1, V_2 \in N^{\mathcal{Q}}(p_y^{r})$, then $A_1 \cap A_2 = (U_1 \cap U_2) \cap (f^{-1}(\gamma(V_1)) \cap f^{-1}(\gamma(V_2)) = U_3 \cap f^{-1}(\gamma(V_1) \cap \gamma(V_2))$. Since γ is

regular, we have $A_1 \cap A_2 \supseteq U_3 \cap f^{-1}(\gamma(V_3)) = A_3$ (say). Thus Φ is fuzzy filterbase. Obiviously Φ converges to p_x^{λ} and $f(\Phi) \gamma$ -converges p_y^r . Then by (3) $f(p_x^{\lambda}) = p_y^r$, which is absurd.

Definition 4.2.5: Let (X,T), (Y,T') be topological spaces, and γ be an operation on T'A mapping $f: X \to Y$ is said to be fuzzy γ -subcontinuous if for every convergent filter base Φ in X, the filter base $f(\Phi)$ fuzzy γ -accumulates to some fuzzy point of Y. **Theorem 4.2.6:** A function $f: X \to Y$ is fuzzy γ -continuous at P_x^{λ} iff for every filter base Φ in X converging to P_x^{λ} , the filter base $f(\Phi)$ fuzzy γ -converges to $f(P_x^{\lambda})$.

Proof: Let the function $f: X \to Y$ be fuzzy γ -continuous and Φ be any fuzzy filter base converging to $P_x^{\lambda} \in S(X)$. Then for each open Q-nbd V of $f(p_x^{\lambda}) \in S(Y)$, there exists an open Q-nbd U of P_x^{λ} such that $f(U) \subseteq \gamma(V)$. Since Φ is fizzy γ -converging to P_x^{λ} , there exists $F \in \Phi$ such that $F \subseteq U$. This implies $f(F) \subseteq f(U)$. Therefore $f(F) \subseteq \gamma(V)$. Also we have $P_x^{\lambda} \in Cl(A)$ for every $A \in \Phi$ and so $f(P_x^{\lambda}) \in f(Cl(A)) \subseteq Cl(f(A)) \subseteq Cl_{\gamma}(f(A))$. Thus $f(P_x^{\lambda}) \in Cl_{\gamma}(f(A))$. Hence $f(\Phi)$ fuzzy γ -converges to $f(P_x^{\lambda})$. Conversely, let $P_x^{\lambda} \in S(X)$ and $V \in N^{\mathcal{Q}}(f(P_x^{\lambda}))$. Since $\Phi = N^{\mathcal{Q}}(P_x^{\lambda}) \to P_x^{\lambda}$, and $f(\Phi)$ fuzzy γ -converges to $f(P_x^{\lambda})$ and so there exists $F \in \Phi$ such that $f(F) \subseteq \gamma(V)$. Hence f is fuzzy γ -continuous.

Theorem 4.2.7: Fuzzy γ -continuous mapping is fuzzy γ -subcontinuous.

Proof: Let Φ be a fuzzy filterbase in X converging to $p_x^{\lambda} \in S(X)$. Then by theorem 4.2.6 fuzzy filterbase $f(\Phi)$ converges to $p_y^r \in S(Y)$. By theorem 3.5.4, $f(\Phi) \gamma$ -accumulates to p_x^r . Consequently f is fuzzy γ -subcontinuous

Theorem 4.2.8: Let (X,T), (Y,T') be topological spaces, and γ an operation on T'. If $f: X \to Y$ is fuzzy γ -subcontinuous with fuzzy γ -closed graph, then f is fuzzy γ -continuous.

Proof: Suppose f is not fuzzy γ -continuous. Then there exists a $P_x^{\lambda} \in S(X)$ and filter base Φ in X converging to P_x^{λ} such that $f(\Phi)$ does not fuzzy γ -converge to $f(P_x^{\lambda})$ and so there exists an open Q-neighbourhood V of $f(P_x^{\lambda})$ such that $f(F) \subseteq (\gamma(V))^C$ which implies $f^{-1}(f(F) \subseteq f^{-1}((\gamma(V))^C)$. But we have $F \subseteq f^{-1}(f(F))$. Therefore $F \subseteq f^{-1}((\gamma(V))^{C})$. Let $\Psi' = \{F \cap f^{-1}((\gamma(V))^{C}) : F \in \Phi$. Then clearly Ψ' is filter base in X. Also Φ is contained in the filter Ψ generated by Ψ' , and so Ψ converges to P_{x}^{λ} . Since f is fuzzy γ -subcontinuous, the filter base $f(\Psi)$ fuzzy γ -converges to some $P_{y}^{r} \in S(Y)$. Hence by theorem 4.2.4 (3), we have $f(P_{x}^{\lambda}) = P_{y}^{r}$, which is absurd. Hence f is fuzzy γ -continuous.

Theorem 4.2.9: If (Y,T') is fuzzy γ -compact space for some operation γ on T', then every mapping f from fts (X,T) into (Y,T') is fuzzy γ -subcontinuous.

Proof: Let Φ be a convergent fuzzy filter base in X. Then by theorem 3.5.11 the fuzzy filter base $f(\Phi)$ fuzzy γ -accumulates to some fuzzy point of Y. Thus f is fuzzy γ -subcontinuous.

Theorem 4.2.10: Let f be a mapping from fts (X,T) into fts (Y,T') and γ an operation on T'. If (Y,T') is fuzzy γ -compact and f has fuzzy γ -closed graph, then f is fuzzy γ -continuous.

Proof: By theorem 4.2.9 f is fuzzy γ -subcontinuous, and hence it is fuzzy

 γ -continuous by theorem 4.2.8

4.3. Some closed and open functions in fuzzy topological spaces.

Definition 4.3.1: Let (X,T), (Y,T') be fts and γ an operation on T'. A mapping $f:(X,T) \to (Y,T')$ is called fuzzy locally γ -closed if for each open Q-neighbourhood U of fuzzy point $p_x^{\lambda} \in S(X)$, there is a open Q-neighbourhood V of p_x^{λ} such that $V \subseteq U$ and f(V) is fuzzy γ -closed in Y.

Example 4.3.2:

(1) If γ is identity operation then fuzzy locally γ -closed mapping is called fuzzy locally closed mapping

(2) If γ is closure operation then fuzzy locally γ -closed mapping is called fuzzy locally θ - closed mapping.

(3) If γ is interior-closure operation then fuzzy locally γ -closed mapping is called fuzzy locally δ - closed mapping.

Definition 4.3.3: Let γ be an operation on T'. A mapping $f:(X,T) \to (Y,T')$ is called (1) fuzzy γ -closed if f(A) is γ -closed set in Y for each fuzzy closed set A in X. (2) fuzzy γ -open if f(A) is γ -open set in Y for each fuzzy opn set A in X

Examples 4.3.4: (1) If γ is identity operation then fuzzy γ -closed (γ -open) mapping is coincides with fuzzy closed (fuzzy open) [21]

(2) If γ is closure operation then fuzzy γ -closed (γ -open) mapping is called fuzzy

 θ -closed (fuzzy θ -open) [20]

(3) If γ is interior-closure operation then fuzzy γ -closed (γ -open) mapping is called fuzzy δ -closed (δ -open)

Definition 4.3.5: Let γ be an operation on T'. A mapping $f : (X,T) \to (Y,T')$ is called fuzzy almost γ -closed if f(A) is γ -closed set in Y for each fuzzy regularly-closed set A in X

Example 4.3.6: (1) If γ is identity operation then fuzzy γ -closed mapping is coincides with fuzzy almost closed mapping

(2) If γ is closure operation then fuzzy almost γ -closed mapping is called fuzzy almost θ -closed mapping.

(3) If γ is interior-closure operation then fuzzy almost γ -closed mapping is called fuzzy almost δ - closed mapping.

Remark 4.3.7: If a function $f:(X,T) \to (Y,T')$ is fuzzy γ -closed, then it is fuzzy almost γ -closed function.

Proof: Let A be a fuzzy regular closed set X. Then A is fuzzy closed subset of X and hence by assumption f(A) is fuzzy γ -closed set of Y. This shows that f is almost γ -closed function.

Remark 4.3.8: If a function $f:(X,T) \to (Y,T')$ is fuzzy almost γ -closed function where (X,T) is fuzzy regular space and γ is an operation on T', then it is fuzzy locally γ -closed function.

Lemma 4.3.9: Let (X,T) and (Y,T') be fts and γ an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy locally γ -closed and has closed point inverses, then f has a fuzzy γ -closed graph.

Proof: Let $(p_x^{\lambda}, p_y^{r}) \in X \times Y - G(f)$. Then $p_x^{\lambda} \notin f^{-1}(p_y^{r})$ and since $f^{-1}(p_y^{r})$ is fuzzy closed, there exists an open Q-neighbourhood U of p_x^{λ} such that $U\overline{q}f^{-1}(p_y^{r})$. The fuzzy locally γ -closedness of f implies that there is an open Q-neighbourhood V of p_x^{λ} such that $V \subseteq U$ and f(V) is fuzzy γ -closed in Y. Since $f(p_x^{\lambda})qf(V)$ and $f(p_x^{\lambda}) \neq p_y^{r}$, then $p_y^{r}\overline{q}f(V)$. This means $p_y^{r} \notin f(V)$. Then there exists an open Q-neighbourhood W of p_y^{r} such that $f(V)\overline{q}\gamma(W)$ and hence, by Lemma 4.2.3 it follows that f has a fuzzy γ -closed graphs.

Lemma 4.3.10: Let (X,T) and (Y,T') be fts and γ an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy almost γ -closed with fuzzy θ - closed point inverses, then f has a fuzzy γ -closed graphs.

Proof: Let $(p_x^{\lambda}, p_y^{r}) \in X \times Y - G(f)$. Then $p_x^{\lambda} \notin f^{-1}(p_y^{r})$ and since $f^{-1}(p_y^{r})$ is fuzzy fuzzy θ -closed, there exists an open Q-neighbourhood U of p_x^{λ} such that

 $Cl(U)\overline{q}f^{-1}(p_y^r)$. Since Cl(U) is fuzzy regularly-closed, the fuzzy almost γ -closedness of f implies that f(Cl(U)) is fuzzy γ -closed in Y. Since $f(p_x^{\lambda})qf(Cl(U))$ and $f(p_x^{\lambda}) \neq p_y^r$, then $p_y^r\overline{q}f(cl(U))$. This means $p_y^r \notin f(Cl(U))$. Then there exists an open Q-neighbourhood W of p_y^r such that $f(Cl(U))\overline{q}\gamma(W)$. Since $U \subseteq Cl(U)$ implies $f(U) \subseteq f(Cl(U))$, it follows that $f(U)\overline{q}\gamma(W)$ and hence, by Lemma 4.2.3 it follows that f has a fuzzy γ -closed graph.

Theorem 4.3.11: Let (X,T) and (Y,T') be fts and γ be an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy almost γ -closed with fuzzy closed point inverses and X is a fuzzy regular space, then f has a fuzzy γ -closed graphs.

Proof: Since fuzzy θ -closure and closure coincide for subsets of a fuzzy regular space, it follows from above Lemma 4.3.10.

Theorem 4.3.12: Let (X,T) and (Y,T') be fts and γ be an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy almost γ -closed function with fuzzy θ - closed point inverses and (Y,T') is fuzzy γ -compact, then f is fuzzy γ -continuous.

Proof: It follows from Lemma 4.3.10 and theorem 4.2.10.

Theorem 4.3.13: Let (X,T) and (Y,T') be fts and γ be an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy locally γ -closed function with fuzzy closed point inverses and (Y,T') is fuzzy γ -compact, then f is fuzzy γ -continuous.

Proof: It follows from Lemma 4.3.9 and theorem 4.2.10.

Theorem 4.3.14: If f is a fuzzy almost γ -closed function from a fuzzy regular space (X,T) into a fuzzy γ -compact space (Y,T') such that $f^{-1}(p_y^r)$ is fuzzy closed for every $p_y^r \in S(Y)$ then f is fuzzy γ -continuous.

Proof: Since fuzzy θ -closure and closure coincide for subsets of a fuzzy regular space, it follows from Lemma 4.3.10 that f has a fuzzy γ -closed graph. Since (Y,T') is fuzzy γ -compact, then by theorem 4.2.10 f is fuzzy γ -continuous.

Theorem 4.3.15: Let (X,T) and (Y,T') be fts and γ an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy almost open function with fuzzy closed graph, then f has a fuzzy strongly-closed graph.

Proof: Let $(p_x^{\lambda}, p_y^{r}) \in X \times Y - G(f)$. Since f has a fuzzy closed graphs, there exists an open Q-neighbourhoods U and V of p_x^{λ} and p_y^{r} such that $f(U)\overline{q}V$. This implies $U\overline{q}f^{-1}(V)$ and $U\overline{q}Cl(f^{-1}(V))$. Since f is fuzzy almost open, $U\overline{q}f^{-1}(Cl(V))$. Hence $f(U)\overline{q}Cl(V)$. So f has a fuzzy strongly-closed graph.

Theorem 4.3.16: Let (X,T) and (Y,T') be fts and γ be an operation on T'. If a function $f:(X,T) \to (Y,T')$ is fuzzy almost-open, almost-closed function with fuzzy θ -closed point inverses, then f has a fuzzy strongly-closed graphs.

Proof: It follows from Lemma 4.3.10 (when γ is identity operation) and theorem 4.3.15 **Lemma 4.3.17:** If a function $f:(X,T) \to (Y,T')$ is fuzzy almost γ -closed injection function where (X,T) is fuzzy Hausdorff and γ is an operation on T', then f has a fuzzy γ -closed graph.

Proof: Since (X,T) is fuzzy Hausdorff, its fuzzy points are fuzzy θ -closed and hence f has fuzzy θ -closed point inverse. Now by lemma 4.3.10, it follows that f has a fuzzy γ -closed graph.

Theorem 4.3.18: Let f be a fuzzy almost γ -closed injection function from a fuzzy Hausdorf space (X,T) into a fuzzy γ -compact space (Y,T') and γ be an operation on T', then f is fuzzy γ -continuous.

Proof: It follows from the Lemma 4.3.17 and Theorem 4.2.10.

Lemma 4.3.19: If a function $f:(X,T) \to (Y,T')$ is fuzzy almost- open function with closed graph, then *f* has a fuzzy strongly-closed graph.

Proof: Let $(p_x^{\lambda}, p_y^{r}) \in X \times Y - G(f)$. Since f has a fuzzy closed graph, there exists an open Q-neighbourhoods U and V of p_x^{λ} and p_y^{r} such that $f(U)\overline{q}V$. This implies that $U\overline{q}f^{-1}(V)$. Therefore $U\overline{q}Cl(f^{-1}(V))$. Since f is fuzzy almost open function, $U\overline{q}f^{-1}(Cl(V))$. Hence $f(U)\overline{q}Cl(V)$. So f is fuzzy strongly-closed graph

4.4. Fuzzy γ -separation Axoioms:

Definition 4.3.1: A fts (X,T) is called:

(1) Fuzzy $\gamma - T_1$ iff for any $p_x^{\lambda}, p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$, there exists open

Q-neighbourhoods U and V of p_x^{λ} and p_y^{k} respectively such that $p_y^{k} \overline{q} \gamma(U)$ and $p_x^{\lambda} \overline{q} \gamma(V)$

(2) Fuzzy $\gamma - T_2$ iff for any p_x^{λ} , $p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$, there exists open

Q-neighbourhoods U and V of p_x^{λ} and p_y^{λ} respectively such that $\gamma(U)\overline{q}\gamma(V)$.

Theorem 4.3.2: If a space (X,T) is fuzzy $\gamma - T_2$, then it is fuzzy $\gamma - T_1$.

Proof: Let (X,T) be a fuzzy $\gamma - T_2$ space. Let $p_x^{\lambda}, p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$, then there exists open Q-neighbourhoods U and V of p_x^{λ} and p_y^k respectively such that

 $\gamma(U)\overline{q}\gamma(V)$. Since $p_x^{\lambda}q\gamma(U)$ and $p_y^{k}q\gamma(V)$, therefore $p_x^{\lambda}\overline{q}\gamma(V)$ and $p_y^{k}\overline{q}\gamma(U)$. Hence (X,T) is γ - T_1 .

Theorem 4.3.3: A space (X,T) is fuzzy $\gamma - T_1$ if and only any fuzzy singleton in X is a fuzzy γ -closed set.

Proof: (Necessity): Let (X,T) be a fuzzy $\gamma - T_1$ and $p_x^{\lambda} \in S(X)$. Since $p_x^{\lambda} \subseteq cl_{\gamma}(p_x^{\lambda})$, so it is only need to prove $cl_{\gamma}(p_x^{\lambda}) \subseteq p_x^{\lambda}$ Let $p_y^{k} \notin p_x^{\lambda}$. Then $p_x^{\lambda} \neq p_y^{k}$ and by assumption, there exists an open Q-neighbourhood V of p_y^{k} respectively such that $p_y^{k} \overline{q} \gamma(U)$. This implies $p_y^{k} \notin cl_{\gamma}(p_x^{\lambda})$. Thus $cl_{\gamma}(p_x^{\lambda}) \subseteq p_x^{\lambda}$ and hence $cl_{\gamma}(p_x^{\lambda}) = p_x^{\lambda}$. This shows that p_x^{λ} is γ -closed set.

(sufficiency): Let p_x^{λ} , $p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$. Since p_x^{λ} and p_y^k are both γ -closed set, $cl_{\gamma}(p_x^{\lambda}) = p_x^{\lambda}$ and $cl_{\gamma}(p_y^k) = p_y^k$. Since $p_x^{\lambda} \neq p_y^k$, then $p_y^k \notin cl_{\gamma}(p_x^{\lambda})$ and $p_x^{\lambda} \notin cl_{\gamma}(p_y^k)$. Therefore, there exists open Q-neighbourhoods U and V of p_x^{λ} and p_y^k respectively such that $p_x^{\lambda} \overline{q} \gamma(V)$ and $p_y^k \overline{q} \gamma(U)$. This implies (X,T) is fuzzy $\gamma - T_1$ space.

Theorem 4.3.4: Suppose $\gamma: T \to I^X$ is regular operation. If (X, T_{γ}) is a fuzzy T_2 space then (X, T) is a fuzzy $\gamma - T_2$.

Proof: $p_x^{\lambda}, p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$. Since (X, T_{γ}) is a fuzzy T_2 space, then there exists open Q-neighbourhoods U, V ($\in T_{\gamma} \subseteq T$) of p_x^{λ} and p_y^k respectively such that $\gamma(U)\overline{q}\gamma(V)$. Thus (X,T) is a fuzzy $\gamma - T_2$.

Definition 4.3.5: Let (X,T) be a fts and γ an operation on T. A fuzzy set $A \in I^X$ is called γ -generalized closed (γ -g-closed, for short) if $cl_{\gamma}(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy γ -open in (X,T).

Theorem 4.3.6: Every fuzzy γ -closed set is fuzzy γ -g-closed.

Proof: Obvious. The converse is not true as shown by the following example.

Example 4.3.7: Let $X = \{x,y\}$ and $T = \{X, \emptyset, p_y^{0,7}\}$. Define $\gamma: T \to I^X$ by $\gamma(U) = cl(U)$ for each $U \in T$.

Let $A = p_x^{0.5} \cup p_y^{0.6}$. Then A is fuzzy γ -g-closed set but not fuzzy γ -closed set.

Definition 4.3.8: A space (X,T) is called a fuzzy $\gamma - T_{\frac{1}{2}}$ space if every fuzzy γ -g.closed set of (X,T) is fuzzy γ -closed.

We conclude this chapter with following teorem on $\gamma - T_{\gamma_2}$ space

Theorem 4.3.9: For each $p_x^{\lambda} \in S(X)$, p_x^{λ} is γ -closed or $(p_x^{\lambda})^C$ is fuzzy γ -g.closed set in (X,T).

Proof: Suppose p_x^{λ} is not γ -closed. Then $(p_x^{\lambda})^C$ is fuzzy γ -open. Let U be any fuzzy γ -open set such that $(p_x^{\lambda})^C \subseteq U$. Since U = X is the only fuzzy γ -open, $cl_{\gamma}((p_x^{\lambda})^C) \subseteq U$ Therefore $(p_x^{\lambda})^C$ is fuzzy γ -g.closed set.