CHAPTER-5 Fuzzy (γ,β)-continuous mapping and Fuzzy (γ,β)-closed(open) mapping.

5.1. Introduction:

In this chapter, we have defined a new class of continuous functions called fuzzy (γ, β) -continuous functions that generalizes several forms fuzzy continuity viz.fuzzy continuity, fuzzy θ -continuity, fuzzy δ -continuity,fuzzy weak-continuity, fuzzy strong θ -continuity,fuzzy super continuity and fuzzy weak θ -continuity. Then we have introduced the notion of fuzzy (γ, β) -open, and fuzzy (γ, β) -closed mappings which generalizes the concepts of fuzzy open(closed), fuzzy θ -open(fuzzy θ -closed) and fuzzy δ -open(fuzzy δ -closed) mappings. After that we have introduced the concepts of fuzzy (γ, β) -homeomorphism and particularly, fuzzy homeomorphism, fuzzy θ -homeomorphism and fuzzy δ -homeomorphism. Several characterizations of these mappings are also investigated.

Throughout this chapter, let $f:(X,T) \to (Y,T')$ be fuzzy mapping and let $\gamma: T \to I^X$ be operation on T and $\beta: T' \to I^Y$ be operation on T'.

5.2. Fuzzy (γ, β) -continuous mapping:

In this section we begin with the concepts of fuzzy (γ, β) -continuous mapping and discuss some some of their properties.

Defination 5.2.1: A mapping $f:(X,T)\to(Y,T')$ is said to be fuzzy (γ,β) -continuous if and only if for every fuzzy point p_x^{λ} in X and every fuzzy open Q-neighborhood V of $f(p_x^{\lambda})$, there exists a fuzzy open Q-neighborhood U of p_x^{λ} such that $f(\gamma(U)) \subseteq \beta(V)$.

Examples 5.2.2:

(1) For $\gamma = \beta$ = identity operation, fuzzy (γ , β)-continuity coincides with fuzzy continuity [21, 83]

(2) For $\gamma = \beta$ = closure operation, fuzzy (γ, β)-continuity coincides with fuzzy θ continuity [64]

(3) For $\gamma = \text{identity}$ operation and $\beta = \text{closure}$ operation, then (γ, β) -continuity coincides with fuzzy weakly θ -continuity [64]

(4) For $\gamma = \text{closure operation and } \beta = \text{ identity operation, then } (\gamma, \beta) \text{-continuity coincides with fuzzy strongly } \theta \text{-continuity [66]}$

(7) For γ = identity operation and β = interior-closure operation, then (γ, β) -continuity coincides with fuzzy almost continuity [38, 65]

(8) For $\gamma = \text{closure operation and } \beta = \text{interior-closure operation, then } (\gamma, \beta) - \text{continuity coincides with fuzzy almost strong } \theta$ -continuity [64]

(9) For $\gamma =$ interior-closure operation and $\beta =$ identity operation, then (γ, β) -continuity coincides with fuzzy super-continuity [66]

(10) For $\gamma =$ interior-closure operation and $\beta =$ closure operation, then (γ, β) -continuity coincides with fuzzy weak δ -continuity [64]

Theorem 5.2.3: Let (i), (ii), (iii) and (iv) be the following properties for a fuzzy mapping $f:(X,T) \rightarrow (Y,T')$

(i) $f:(X,T) \to (Y,T')$ is fuzzy (γ,β) -continuous mapping.

(ii) $f(\operatorname{Cl}_{\gamma}(A)) \subseteq \operatorname{Cl}_{\beta}(f(A))$ for every fuzzy subset A of (X,T).

(iii) For any fuzzy β -closed set B of (Y, T'), $f^{-1}(B)$ is fuzzy γ -closed set in (X,T).

(iv) For any fuzzy β -open set B of (Y, T'), $f^{-1}(B)$ is fuzzy γ -open set in (X, T).

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)

Proof: (i) \Rightarrow (ii). Let $p_x^{\lambda} \in cl_{\gamma}(A)$ and let V be an open Q-nbd. of $f(p_x^{\lambda})$. Since f is fuzzy (γ, β) -continuous, there exists an open Q-nbd. of p_x^{λ} such that $f(\gamma(U)) \subseteq \beta(V)$. Now $p_x^{\lambda} \in cl_{\gamma}(A) \Rightarrow \gamma(U) qA \Rightarrow f(\gamma(U))qf(A) \Rightarrow \beta(V)qf(A)$ $\Rightarrow f(p_x^{\lambda}) \in cl_{\beta}(f(A)) \Rightarrow p_x^{\lambda} \in f^{-1}(cl_{\beta}(f(A)))$. Thus $cl_{\gamma}(A) \subseteq f^{-1}(cl_{\beta}(f(A)))$ so that $f(cl_{\gamma}(A)) \subseteq cl_{\beta}(f(A))$ (ii) \Rightarrow (iii) Let B be a fuzzy β -closed set of (Y, T'). Then $cl_{\beta}(B) = B$ and hence by (i), $f(cl_{\gamma}(f^{-1}(B))) \subseteq cl_{\beta}(ff^{-1}(B)) \subseteq cl_{\beta}(B) = B$,

whence we do obtain $cl_{\gamma}(f^{-1}(B)) \subseteq f^{-1}(B)$.

Thus $cl_{\gamma}(f^{-1}(B)) = f^{-1}(B)$ and hence $f^{-1}(B)$ is fuzzy γ -closed set in X.

(iii) \Rightarrow (iv). Let B be fuzzy β -open set in Y. Then B^c is fuzzy β -closed set in Y. Then by (iii), $f^{-1}(B^c)$ is fuzzy γ -closed set in X. Since $f^{-1}(B^c) = 1 - f^{-1}(B)$, $f^{-1}(B)$ is fuzzy γ open set in X.

Corollary 5.2.4: If (Y,T') fuzzy β -regular space, then all the properties of the theorem 5.2.3 are equivalent.

Proof: By Theorem 5.2.3 we have (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv), so it is sufficient to prove (iv) \Rightarrow (i). Let p_x^{λ} be a fuzzy point in X and V be a fuzzy open Q-neighborhood of $f(p_x^{\lambda})$.Since (Y,T') is fuzzy β -regular space, then by proposition 3.2.15, V is fuzzy β -open set in Y. By hypothesis, $f^{-1}(V)$ is fuzzy γ -open set in X. Also we have $p_x^{\lambda} \neq f^{-1}(V)$. Since $f^{-1}(V)$ is fuzzy γ -open set, there exists an open Q-neighbourhood U of p_x^{λ} such that $\gamma(U) \subseteq f^{-1}(V)$ and so $f(\gamma(U)) \subseteq V \subseteq \beta(V)$. Thus f is fuzzy (γ,β)-continuous.

Remark 5.2.5: The β -regularity on the codomain space of above Corollary 5.2.4 can not be removed as shown by the following example.

Example 5.2.6: Let $X = \{x, y\}$ and A, B, C $\in I^X$ defined by

A = 0.6, B(x) = .6, B(y) = 0.7, C = 0.3,

where α denotes the constant mapping with value α .

Let $T = \{X, \emptyset A, B, C\}$ and $T' = \{X, \emptyset, B, C\}$

Then (X,T) and (X,T') are fts and (X,T') is not β -regular space.

Define $\gamma: T \to I^X$ by $\gamma(X) = X, \gamma(\emptyset) = \emptyset, \gamma(A) = A, \gamma(B) = B, \gamma(C) = \underline{0.5}.$

and $\beta: T' \to I^X$ by $\beta(X) = X, \beta(\emptyset) = \emptyset, \beta(B) = B, \beta(C) = \underline{0.4}$.

Now consider the identity mapping $f:(X,T) \to (X,T')$. Then the inverse image of each β -open in X (codomain) is γ -open in X (domain) but f is not fuzzy (γ, β) -continuous. For $\lambda = 0.8$ and an open Q-neighbourhood C of $f(p_x^{\lambda})$, there exists no open Q-neighbourhood U of p_x^{λ} such that $f(\gamma(U)) \subseteq \beta(C)$.

Theorem 5.2.7: For the mapping $f:(X,T) \to (Y,T')$ the following are equivalent

(1)
$$f:(X,T) \to (Y,T')$$
 is fuzzy (γ,β) -continuous mapping.

(2) $f^{-1}(U) \subseteq \operatorname{int}_{\gamma}(f^{-1}(\beta(U))) \quad \forall U \in T'$

(3)
$$f(\operatorname{Cl}_{\gamma}(A)) \subset \operatorname{Cl}_{\beta}(f(A)) \quad \forall A \in I^X$$

(4)
$$cl_{\gamma}(f^{-1}(A)) \subseteq f^{-1}(cl_{\beta}(A)) \quad \forall A \in I^{\gamma}$$

(4)
$$f^{-1}(\operatorname{int}_{\beta}(A)) \subseteq \operatorname{int}_{\gamma}(f^{-1}(A)) \forall A \in I^{Y}$$

Proof: (1) \Rightarrow (2): Let $U \in T'$ and $p_x^{\lambda} q f^{-1}(U)$. So, $f(p_x^{\lambda}) q U$. Since f is fuzzy (γ, β) continuous, there exists an open Q-neighborhood V of p_x^{λ} such that $f(\gamma(V)) \subseteq \beta(U)$ and
hence $\gamma(V)) \subseteq f^{-1}(\beta(U))$. By the definition 3.2.5, it implies that $p_x^{\lambda} q \operatorname{int}_{\gamma}(f^{-1}(\beta(U)))$.
Thus $p_x^{\lambda} q f^{-1}(U) \Rightarrow p_x^{\lambda} q \operatorname{int}_{\gamma}(f^{-1}(\beta(U)))$. It follows that $f^{-1}(U) \subseteq \operatorname{int}_{\gamma}(f^{-1}(\beta(U)))$.

(2) \Rightarrow (3): Let $A \in I^x$ and $f(p_x^{\lambda}) \notin cl_{\beta}(f(A))$. Then there exists an open Qneighbourhood V of $f(p_x^{\lambda})$ such that $\beta(V)\vec{q}f(A)$ and hence $f^{-1}(\beta(V))\vec{q}A$. Also $f(p_x^{\lambda})qV$ implies $p_x^{\lambda}qf^{-1}(V)$. Then by (2) we obtain that $p_x^{\lambda}q$ int $_{\gamma}(f^{-1}(\beta(V)))$. Hence by definition 3.2.5, there exists an open Q-neighbourhood U of p_x^{λ} such that $\gamma(U) \subseteq f^{-1}(\beta(V))$. Then $\gamma(U)\vec{q}A$ and so $p_x^{\lambda} \notin cl_{\gamma}(A)$. This implies

 $f(p_x^{\lambda}) \notin f(cl_{\gamma}(A)) \text{. Thus } f(\operatorname{Cl}_{\gamma}(A)) \subset \operatorname{Cl}_{\beta}(f(A)) \ .$

(3) \Rightarrow (4) : Let $A \in I^{Y}$. Since $ff^{-1}(A) \subseteq A$, by theorem 3.3.7(v),

we have $cl_{\beta}(ff^{-1}(A)) \subseteq cl_{\beta}(A)$. Also $f^{-1}(A) \in I^{X}$.

Then by (3), we have $f(cl_{\gamma}(f^{-1}(A)) \subseteq cl_{\beta}(ff^{-1}(A)) \subseteq cl_{\beta}(A)$.

Thus $cl_{\gamma}(f^{-1}(A)) \subseteq f^{-1}(cl_{\beta}(A))$.

(4) \Rightarrow (5): Let $A \in I^{\gamma}$ and $p_x^{\lambda} q f^{-1}(\operatorname{int}_{\beta}(A))$.

Then $p_x^{\lambda} \notin (f^{-1}(in_{\beta}(A)))^{C} = f^{-1}(cl_{\beta}(A^{C})).$

By (4), $p_x^{\lambda} \notin cl_{\gamma}(f^{-1}(A^{C})) = (int_{\gamma}(f^{-1}(A)))^{C}$

and hence $p_x^{\lambda} \overline{q} \operatorname{int}_{\gamma}(f^{-1}(A))$. Thus $f^{-1}(\operatorname{int}_{\beta}(A)) \subseteq \operatorname{int}_{\gamma}(f^{-1}(A))$.

(5) \Rightarrow (1) Let $p_x^{\lambda} \in S(X)$ and V be an open Q-neighbourhood of $f(p_x^{\lambda})$. Since $\beta(V)\overline{q}(\beta(V))^{C}$, we have $f(p_x^{\lambda}) \notin cl_{\beta}(\beta(V))^{C} = (\operatorname{int}_{\beta}(\beta(V)))^{C}$ and hence $f(p_x^{\lambda})q\operatorname{int}_{\beta}(\beta(V))$ which implies $p_x^{\lambda}qf^{-1}(\operatorname{int}_{\beta}(\beta(V)))$. By (5), we obtain that $p_x^{\lambda}q\operatorname{int}_{\gamma}(f^{-1}(\beta(V)))$. This means that there exists an open Q-neighbourhood U of p_x^{λ} such that $\gamma(U) \subseteq f^{-1}(\beta(V))$ and so $f(\gamma(U)) \subseteq \beta(V)$. This shows that f is fuzzy (γ, β) -continuous mapping.

5.3. Fuzzy (γ, β) -open mapping and (γ, β) -closed mapping.

This section is devoted to introduction and study of the concepts of fuzzy (γ, β) -open (fuzzy (γ, β) -closed) mapping and some of their properties in fuzzy topological space

Definition 5.3.1: Let $\gamma: T \to I^X$ be fuzzy operation on T and $\beta: T' \to I^Y$ be fuzzy operation on T'. A mapping $f: (X,T) \to (Y,T')$ is called

(1) Fuzzy (γ, β) -open if for any γ -open set A of (X,T), f(A) is a β -open set.

(2) Fuzzy (γ, β) -closed if for any γ -closed set A of (X,T), f(A) is a β -closed set.

Example 5.3.2:

(1) If $\gamma = \beta$ = identity operation, fuzzy (γ, β) -open (fuzzy (γ, β) -closed) mapping coincides with fuzzy open (fuzzy closed) [11]

(2) If $\gamma = \text{closure operation and } \beta = \text{closure operation, then fuzzy } (\gamma, \beta) \text{-open}$ (fuzzy

 (γ, β) -closed) mapping coincides with fuzzy θ -open (fuzzy θ -closed) mapping

(3) If $\gamma =$ interior-closure operation and $\beta =$ interior-closure operation, then fuzzy (γ, β) -

open (fuzzy (γ, β) -closed) mapping is called fuzzy δ -open (fuzzy δ -closed) mapping.

Therom 5.3.3: Let $f:(X,T) \to (Y,T')$ be a mapping and γ and β operations on T and T' respectively.

(1) If $f(\operatorname{int}_{\gamma}(A)) \subseteq \operatorname{int}_{\beta}(f(A))$ for each fuzzy set A in X, then f is fuzzy (γ, β) -open

(2) If (X,T) is γ -regular spaces, then the converse of (1) is true.

Proof: (1) Let A be any γ -open set. Then $A = \operatorname{int}_{\gamma}(A)$ and so $f(A) = f(\operatorname{int}_{\gamma}(A))$. By hypothesis, $f(A) = f(\operatorname{int}_{\gamma}(A)) \subseteq \operatorname{int}_{\beta}(f(A))$. Also we have $\operatorname{int}_{\beta}(f(A)) \subseteq f(A)$. Therefore $f(A) = \operatorname{int}_{\beta}(f(A))$ and hence f(A) is β -open set in Y.

(2) Let (X,T) be fuzzy γ -regular space. Then we have $T = T_{\gamma}$. Since for each $A \in I^{X}$ int_{γ}(A) is fuzzy open, therefore int_{γ}(A) is fuzzy γ -open and by assumption, $f(\operatorname{int}_{\gamma}(A))$ is fuzzy β -open set. Hence $\operatorname{int}_{\beta}(f(\operatorname{int}_{\gamma}(A))) = f(\operatorname{int}_{\gamma}(A))$. Also $\operatorname{int}_{\gamma}(A) \subseteq A$ implies $f(\operatorname{int}_{\gamma}(A)) \subseteq f(A)$ so that $\operatorname{int}_{\beta}(f(\operatorname{int}_{\gamma}(A))) \subseteq \operatorname{int}_{\beta}(f(A))$.

Example 5.3.4: Let $X = \{x, y\}$ and A, B, C, $D \in I^X$ defined by

A(x) = 0.4, B (x) = 0.6, C(x) = 0.7, D = 0.6A(y) = 0.3, B(y) = 0.7, C(y) = 0.6

Where α denotes the constant mapping with value α .

Let $T = \{X, \emptyset A, B,\}$ and $T' = \{X, \emptyset, C, D\}$.

Then (X,T) and (X,T') are fts.

Define $\gamma: T \to I^X$ by $\gamma(X) = X, \gamma(\emptyset) = \emptyset$,

$$\gamma(A) = \underline{0.4},$$

 $\gamma(B) = B \text{ and } \beta: T' \to I^X$
by $\beta(X) = X, \ \beta(\emptyset) = \emptyset, \ \beta(C) = C, \ \beta(D) = \underline{0.5}$

Clearly (X,T) is not γ -regular spaces. Moreover $T_{\gamma} = \{X, \emptyset, B\}$ and $T'_{\beta} = \{X, \emptyset, C\}$ and so $T^{C}_{\gamma} = \{X, \emptyset, A\}$ and $T'^{C}_{\beta} = \{X, \emptyset, 1 - C\}$

Now consider the identity mapping $f:(X,T) \to (X,T')$ satisfying f(x) = y and f(y) = x. Then every image of γ -closed (γ -open) is β -closed (β -open) but f is not fuzzy (γ, β) -closed.

For $B \in I^X$, we have $cl_{\gamma}(B) = \{(x,0.6), (y,0.9) : \text{So}, f(cl_{\gamma}(B)) = \{(x,0.9), (y,0.6)\}$. Since f(B) = C, we have $cl_{\beta}(f(B)) = cl_{\beta}(f(C)) = \underline{0.9}$. Hence $cl_{\beta}(f(B)) \not\subseteq f(cl_{\gamma}(B))$.

Theorem 5.3.5: Suppose that f is fuzzy (γ, β) -continuous and fuzzy (*identity*, β) is closed mapping then f(A) is β -g-closed for each fuzzy γ -g-closed A of (X,T),

Proof: (1) Let V be any fuzzy β -open set of (Y,T') such that $f(A) \subseteq V$. Then by theorem 5.4.3, $f^{-1}(V)$ is fuzzy γ -open. Since A is γ -g-closed and $A \subseteq f^{-1}(V)$, we have $cl_{\gamma}(A) \subseteq f^{-1}(V)$ and hence $f(cl_{\gamma}(A)) \subseteq V$. Since $cl_{\gamma}(A)$ is closed set in (X,T) and f is (id, β) closed mapping then $f(cl_{\gamma}(A))$ is β -closed set of (Y,T'). Also $A \subseteq cl_{\gamma}(A)$ implies $f(A) \subseteq f(cl_{\gamma}(A))$. This implies $cl_{\beta}(f(A)) \subseteq cl_{\beta}(f(cl_{\gamma}(A))) = f(cl_{\gamma}(A)) \subseteq V$.

Therefore f(A) is β -g-closed.

Theorem 5.3.6: Suppose that $f:(X,T) \to (Y,T')$ is fuzzy (γ,β) -continuous and fuzzy (*identity*, β) closed mapping. If f is injective and (Y,T') is fuzzy $\beta - T_{\gamma_2}$ space, then (X,T) is $\gamma - T_{\gamma_2}$.

Proof: Let A be a fuzzy γ -g-closed set of (X,T). We show that A is fuzzy γ -closed. By theorem 5.3.1 and assumptions it is obtained that f(A) is β -g-closed and hence f(A) is β -closed. Since f is fuzzy (γ, β) -continuous, $f^{-1}(f(A))$ is γ -closed by using theorem 5.2.3. Then it is obtained that A is fuzzy γ -closed

Theorem 5.3.7: Let $f:(X,T) \to (Y,T')$ is fuzzy (γ,β) -continuous injective mapping. If (Y,T') is fuzzy $\beta - T_2$ (resp. $\beta - T_1$), then (X,T) is $\gamma - T_2$ (resp. $\gamma - T_1$).

Proof: Suppose that (Y,T') is fuzzy $\beta - T_2$. Let $p_x^{\lambda}, p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$. Since f is injective, we have $f(p_x^{\lambda}) \neq f(p_y^k)$. As (Y,T') is fuzzy $\beta - T_2$, there exist open Q-neighbourhoods W and S of $f(p_x^{\lambda})$ and $f(p_y^k)$ respectively such that $\beta(W)\overline{q}\beta(S)$. Also by fuzzy (γ, β) -continuity of f, there exist U and V of p_x^{λ} and p_y^k respectively such

that $f(\gamma(U)) \subseteq \beta(W)$ and $f(\gamma(V)) \subseteq \beta(S)$. Then it is obtained that $f(\gamma(U))\overline{q}f(\gamma(V))$ and so $\gamma(U)\overline{q}\gamma(V)$. Thus (X,T) is fuzzy $\gamma \cdot T_2$. The proof of the second part is similar. **Theorem 5.3.8:** Let $f:(X,T) \to (Y,T')$ is fuzzy (γ,β) -continuous, injective and open mapping. If (Y,T') is fuzzy β -regular then (X,T) is γ -regular space.

Proof: (1) Let $f:(X,T) \to (Y,T')$ be fuzzy (γ,β) -continuous, injective and open where (Y,T') fuzzy β -regular and $\gamma: T \to I^X$ and $\beta: T' \to I^Y$ are operation on T and T' respectively. Let $p_x^{\lambda} \in S(X)$ and U be an open Q-neighbourhood of p_x^{λ} . Since f is fuzzy open, we have f(U) is an open Q-neighbourhood of $f(p_x^{\lambda})$. Then by regularity of (Y,T'), we obtain $\beta(W) \subseteq f(U)$ for some open Q-neighbourhood W of $f(p_x^{\lambda})$. Also by (γ,β) - continuity of f, there exists an open Q-neighbourhood V of p_x^{λ} such that $f(\gamma(V)) \subseteq \beta(W)$. Hence $\gamma(V) = f^{-1}f(\gamma(V)) \subseteq f^{-1}(\beta(W)) \subseteq f^{-1}f(U) = U$. Thus (X,T) is γ -regular space.

5.4: Fuzzy (γ, β) -homeomorphism.

In this section we define fuzzy (γ, β) -homeomorphism, generalizing the notions of fuzzy homeomorphism, fuzzy θ -homeomorphism and fuzzy δ -homeomorphism. **Definition 5.4.1:** Let γ : T \rightarrow I^X be fuzzy operation on T and β : T' \rightarrow I^Y be fuzzy operation on T'. A bijective mapping $f : (X,T) \rightarrow (Y,T')$ is called fuzzy

 (γ,β) -homeomorphism iff (i) f is (γ,β) -continuous, (ii) f^{-1} is (γ,β) -continuous.

Examples5.4.2:

(1) If $\gamma = \beta$ = identity operation, fuzzy (γ , β)-homeomorphism coincides with fuzzy open [11]

(2) If $\gamma = \text{closure operation and } \beta = \text{closure operation}$, then fuzzy (γ, β) -homeomorphism is called fuzzy θ -homeomorphism

(3) If $\gamma =$ interior-closure operation and $\beta =$ interior-closure operation, then fuzzy (γ, β) -homeomorphism is called fuzzy δ -homeomorphism.

Theorem 5.4.3: Let γ : T \rightarrow I^X be fuzzy operation on T and β : $T' \rightarrow$ I^Y be fuzzy operation on T'. If $f:(X,T) \rightarrow (Y,T')$ is bijective, then the following properties of f are equivalent:

- (1) f is fuzzy (γ, β) -homeomorphism
- (2) f is (γ, β) -continuous and fuzzy (γ, β) -open
- (3) f is (γ, β) -continuous and fuzzy (γ, β) -closed
- (4) $f(\operatorname{int}_{\gamma}(A)) \subseteq \operatorname{int}_{\beta}(f(A))$ for each $A \in I^{X}$

Proof: (1) \Rightarrow (2) : Let A be γ -open set of (X,T). Since f^{-1} is (γ,β) -continuous, then by Theorem 5.1.3 we have $(f^{-1})^{-1}(A) = f(A)$ is fuzzy β -open set of (Y,T'). Consequently f is fuzzy (γ,β) -open mapping and hence $(1)\Rightarrow(2)$.

 $(2) \Rightarrow (3)$: Let A be γ -closed set of (X,T). Then A^{C} is γ -open set of (X,T). Since

 $g = f^{-1}$ is (γ, β) -continuous, then by Theorem 5.1.3 we have $g^{-1}(A^C) = (g^{-1}(A))^C = (f(A))^C$ is fuzzy β -open set of (Y, T'). This implies f(A) is fuzzy β -closed set of (Y, T'). Consequently f is fuzzy (γ, β) -closed mapping and hence $(2) \Rightarrow (3)$.