CHAPTER-6 BIOPERATION-OPEN SETS AND BIOPERATION-CONTINUOUS FUNCTIONS IN FUZZY TOPOLOGICAL SPACE

6.1 Introduction:

In this chapter, we generalize the notion of operation-open sets in the sense of chapter-3 to bioperations and define bioperation-closure and bioperation-generalized closed sets. We then study the concepts of fuzzy bioperation-continuities and bioperation-separation axioms. Several properties and characterizations of these notions are also investigated. Throughout this chapter, γ and γ' are two operations on fuzzy topology T. The results contained in this chapter are communicated in the form of papers [45],[49] for publication.

6.2: Fuzzy (γ, γ') -open sets and its properties:

In this section we have defined the notion of fuzzy (γ, γ')-open sets and investigate the relation between fuzzy (γ, γ')-open sets and fuzzy γ -open sets [chapter-3]

Definition 6.2.1: A fuzzy subset A of (X, T) is called a fuzzy (γ, γ') -open set if for each

 p_x^{λ} q A, there exist open q-neighborhood U and V of p_x^{λ} such that $\gamma(U) \bigcup \gamma'(V) \subseteq A$

Theorem 6.2.2: Let A be a fuzzy subset of (X, T).

(i) A is fuzzy (γ, γ')-open if and only if A is fuzzy γ -open and fuzzy γ' -open.

- (ii) If A is fuzzy (γ, γ')-open, then A is open
- (iii) If A_j is fuzzy (γ, γ') -open for every $j \in J$, then $\bigcup \{A_j \mid j \in J\}$ is fuzzy (γ, γ') -open.
- (iv) The following statements are equivalent:
 - (a) A is fuzzy (γ, γ)-open.
 - (b) A is fuzzy γ -open

Proof: (i) (Necessity) Let $p_x^{\lambda} q$ A. Then there exists open q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \cup \gamma'(V) \subseteq A$. Accordingly max{ $\gamma(U)(x), \gamma'(V)(x)$ } $\leq A(x)$ for all $x \in X$ and so $\gamma(U)(x) \leq A(x)$ and $\gamma'(V)(x) \leq A(x)$. Therefore $\gamma(U) \subseteq A$ and $\gamma'(V) \subseteq A$. Hence A is γ -open and γ' -open

(Sufficiency): Let $p_x^{\lambda} q$ A. Since A is fuzzy γ -open and fuzzy γ' -open, there exists open q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \subseteq A$ and $\gamma'(V) \subseteq A$. Then we obtain $\gamma(U) \bigcup \gamma'(V) \subseteq A$ and so A is fuzzy (γ, γ') -open

(ii) Let A be (γ, γ') -open set. Since $T_{\gamma} \subseteq T$ and A is γ -open by (i), A is open.

(iii) Let B = $\bigcup \{ A_j \mid j \in J \}$ and $p_x^{\lambda} q$ B. Then there exists some $A_j \in T$ such that

 $p_x^{\lambda} q A_j$. Since A_j is (γ, γ') -open, there exists open q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \bigcup \gamma'(V) \subseteq A_j$. Therefore, $(\gamma(U) \bigcup \gamma'(V))(x) \leq A_j(x)$ for all $x \in X$ and so $(\gamma(U) \bigcup \gamma'(V))(x) \leq \sup\{A_j(x) \mid j \in J\}$. This implies $\gamma(U) \bigcup \gamma'(V) \subseteq B$ and hence B is (γ, γ') -open.

(iv) (a) \Leftrightarrow (b) follows if $\gamma = \gamma'$ in (i).

Corollary 6.2.3: $T_{(\gamma,\gamma')}$ denotes the set of all fuzzy (γ, γ') -open sets of (X,T). Then from the theorem 6.2.2, we can obtain the following relation

$$T_{(\gamma,\gamma')} = T_{\gamma} \cap T_{\gamma'} \subseteq T .$$

Definition 6.2.4: A fuzzy topological space (X,T) is said to be fuzzy (γ, γ') -regular space if for each fuzzy point p_x^{λ} of X and every open q-neighborhood U of p_x^{λ} there exist open q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cup \gamma'(S) \subseteq U$.

Theorem 6.2.5: Let (X, T) be fuzzy topological space. Then

- (i) (X, T) is fuzzy (γ, γ')-regular if and only if $T_{(\gamma, \gamma')} = T$ holds.
- (ii) (X, T) is fuzzy (γ, γ')-regular if and only it is fuzzy γ-regular and fuzzy γ'-regular.
- (iii) The following statements are equivalent:
 - (a) (X, *T*) is fuzzy (γ , γ)-regular.
 - (b) (X, T) is fuzzy γ -regular.

Proof: (i) (Necessity) Since $T_{(\gamma,\gamma')} \subseteq T$, it is sufficient to prove $T \subseteq T_{(\gamma,\gamma')}$. Let $A \in T$ and $p_x^{\lambda} q A$. Then $A(x) > 1 - \lambda$ and so A is open q-neighborhood of p_x^{λ} . Since (X, T) is fuzzy (γ, γ') -regular, there exists open q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cup \gamma'(S) \subseteq A$. This shows that A is fuzzy (γ, γ') -open set.

(sufficiency) Let p_x^{λ} be a fuzzy point in X and let V be open q-neighborhood of p_x^{λ} . Since $T_{(\gamma,\gamma')} = T$, V is fuzzy (γ, γ') -open set. Therefore there exists open

Q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cup \gamma'(S) \subseteq V$. This shows (X,T) is fuzzy (γ, γ') -regular.

(ii) By using (i) and 6.2.3, (X,T) is fuzzy (γ, γ')-regular if and only if

 $T_{(\gamma,\gamma')} = T_{\gamma} \cap T_{\gamma'} = T$. That is, (X, T) is fuzzy (γ, γ')-regular if and only $T = T_{\gamma} = T_{\gamma'}$.

By using theorem 3.2.15, we can obtain that (X,T) is fuzzy (γ, γ')-regular if and only it is fuzzy γ -regular and fuzzy γ' -regular.

(iii) It is shown by setting $\gamma = \gamma'$ in (i) and using theorem 3.2.15

Proposition 6.2.6: Let γ and γ' be fuzzy regular operations.

(i) If A and B are fuzzy (γ, γ')-open sets, then A \cap B is (γ, γ')-open.

(ii) $T_{(\gamma,\gamma')}$ is a fuzzy topology on X.

Proof: (i) Let $p_x^{\lambda} q$ (A \cap B). Then $p_x^{\lambda} q$ A and $p_x^{\lambda} q$ B. By theorem 6.2.2, A and B are both fuzzy γ -open and fuzzy γ' -open. Then there exist open Q-neighborhoods U, V, W, and S of p_x^{λ} such that $\gamma(U) \subseteq A$, $\gamma'(W) \subseteq A$ and $\gamma(V) \subseteq B$ and $\gamma'(S) \subseteq B$. Now $(\gamma(U) \cap \gamma(V))(x) = \min \{ \gamma(U)(x), \gamma(V)(x) \}$

 $\leq \min \{ A(x), B(x) \}$ $= (A \cap B)(x)$

and $(\gamma'(W) \cap \gamma'(S))(x) = \min \{ \gamma'(W)(x), \gamma'(S)(x) \}$

 $\leq \min \{ A(x), B(x) \}$

$$= (A \cap B)(x)$$

Therefore

$$((\gamma(U) \cap \gamma(V)) \cup ((\gamma'(W) \cap \gamma'(S)))(x) = \max \{ (\gamma(U) \cap \gamma(V))(x), (\gamma'(W) \cap \gamma'(S))(x) \le \max \{ (A \cap B)(x), (A \cap B)(x) \} \}$$

 $= (A \cap B)(x)$

By using regularity of γ and γ' , there exist open Q-neighborhoods E and F of p_x^{λ} such that $\gamma(E) \subseteq \gamma(U) \cap \gamma(V)$ and $\gamma'(F) \subseteq \gamma'(W) \cap \gamma'(S)$. Hence $(\gamma(E) \cup \gamma'(F))(x) = \max \{ \gamma(E)(x), \gamma'(F)(x) \}$ $\leq \max \{ (\gamma(U) \cap \gamma(V))(x), (\gamma'(W) \cap \gamma'(S))(x) \}$ $\leq \max \{ (A \cap B))(x), (A \cap B)(x) \}$ $= (A \cap B))(x)$

So, $\gamma(E) \cup \gamma'(F) \subseteq A \cap B$. This implies that $A \cap B$ is fuzzy (γ, γ') -open set.

(ii) 0 and 1 are fuzzy (γ, γ') -open sets together with (i) and theorem 6.2.2 (iii) $T_{(\gamma, \gamma')}$ is fuzzy topology on X.

6.3. Fuzzy (γ, γ') -closures and its properties:

In this section we have defined two different types of fuzzy bioperation-closures and investigated relations between them.

Definition 6.3.1: A fuzzy subset A of (X, T) is said to be fuzzy (γ, γ') -closed set if its complement A^c is fuzzy (γ, γ') -open set

Definition 6.3.2: For a fuzzy subset A of (X, T) and $T_{(\gamma, \gamma')}$, $T_{(\gamma, \gamma')}$ -Cl(A) denotes the intersection of all (γ, γ') -closed sets containing A i.e.

$$T_{(\gamma,\gamma')}\text{-Cl}(A) = \inf \{ F : A \subseteq F, F^c \in T_{(\gamma,\gamma')} \}.$$

The following proposition characterizes $T_{(\gamma,\gamma')}$ -Cl(A).

Theorem 6.3.3: (i) For a fuzzy point p_x^{λ} in X, $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A) if and only V q A for any $V \in T_{(\gamma,\gamma')}$ and p_x^{λ} q V.

(ii) A is (γ, γ') -closed if and only if $T_{(\gamma, \gamma')}$ -Cl(A) = A

Proof: We have $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A) if and only if for every fuzzy (γ, γ') -closed set

 $F \supseteq A$, $p_x^{\lambda} \in F$ or $F(x) \ge \lambda$. By taking complement, this fact can be stated as follows:

$$p_x^{\lambda} \in T_{(\gamma,\gamma')}$$
-Cl(A) if and only if for every fuzzy (γ, γ') -open set $B \subseteq A^c$, B(x) $\leq 1-\lambda$.

In other words, $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A) if and only if for every fuzzy (γ, γ') -open set B satisfying B(x) > 1- λ and B is not contained in A^c (which implies BqA). Thus we have proved that $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A) if and only if V q A for every fuzzy (γ, γ') -open set V and $p_x^{\lambda} \neq V$.

(ii) (Necessity) Let A be fuzzy (γ, γ') -closed set. Then by definition 6.3.2

 $T_{(\gamma,\gamma')}$ -Cl(A) = A.

(Sufficiency) Let $T_{(\gamma,\gamma')}$ -Cl(A) = A. We want to prove that A^c is fuzzy (γ,γ') -open set. Let $p_x^{\lambda} \neq A^c$. Then $p_x^{\lambda} \notin A = T_{(\gamma,\gamma')}$ -Cl(A) and there exists a fuzzy (γ,γ') -open set V and $p_x^{\lambda} \neq V$ such that V is not quasi-concident with A. Therefore $V \subseteq A^c$. Since V is fuzzy (γ,γ') -open set, for $p_x^{\lambda} \neq V$, there exists open q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cup \gamma(S) \subseteq V$. Hence we have $\gamma(W) \cup \gamma(S) \subseteq A^c$. This shows that A^c is fuzzy (γ,γ') -open set. That is A is fuzzy (γ,γ') -closed.

Theorem 6.3.4: Let A and B be fuzzy subsets of (X, T).

- (i) $A \subseteq T_{(\gamma,\gamma')}$ -Cl(A),
- (ii) If $A \subseteq B$, then $T_{(\gamma,\gamma')}$ -Cl(A) $\subseteq T_{(\gamma,\gamma')}$ -Cl(B).

(iii) $T_{(\gamma,\gamma')}$ -Cl(A) is fuzzy (γ,γ') -closed set.

Proof: (i) It is obvious from definition 6.3.2.

(ii) Let $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A). Then by theorem 6.3.3 (i), we have V q A for every fuzzy

 (γ, γ') -open set V and $p_x^{\lambda} q$ V. Since A \subseteq B, we have V q B. This shows that

$$p_x^{\lambda} \in T_{(\gamma,\gamma')}$$
-Cl(B). Thus $T_{(\gamma,\gamma')}$ - $cl(A) \subseteq T_{(\gamma,\gamma')}$ - $cl(B)$

(iii). Here we prove that $T_{(\gamma,\gamma')}$ -Cl $(T_{(\gamma,\gamma')}$ -Cl(A)) = $\tau_{(\gamma,\gamma')}$ -Cl(A). Let us put

G = $T_{(\gamma,\gamma')}$ -Cl($T_{(\gamma,\gamma')}$ -Cl(A)) and H = $T_{(\gamma,\gamma')}$ -Cl(A). Let $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl($T_{(\gamma,\gamma')}$ -Cl(A)) and V be fuzzy γ -open set and $p_x^{\lambda} \neq V$. Then by theorem 6.3.3 (i), we have V q H. This implies V(x) +H(x) > 1 for some $x \in X$. Let H(x) = r, r $\in [0,1]$. Then $p_x^r \in H = T_{(\gamma,\gamma')}$ -Cl(A) and V is fuzzy (γ, γ')-open set and $p_x^r \neq V$. Hence by theorem 6.3.3 (i) we get V q A. This shows that $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A). Again, let $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl(A).Then by (i), $p_x^{\lambda} \in T_{(\gamma,\gamma')}$ -Cl($T_{(\gamma,\gamma')}$ -Cl(A))). Thus we have shown that $p_x^{\lambda} \in \tau_{(\gamma,\gamma')}$ -Cl($T_{(\gamma,\gamma')}$ -Cl(A)) $\Leftrightarrow p_x^{\lambda} \in (T_{(\gamma,\gamma')}$ -Cl(A)). Hence

$$T_{(\gamma,\gamma')}$$
-Cl $(T_{(\gamma,\gamma')}$ -Cl (A)) = $T_{(\gamma,\gamma')}$ -Cl (A) and by theorem 6.3.3 (ii) $T_{(\gamma,\gamma')}$ -Cl (A) is fuzzy

 (γ, γ') -closed set.

We introduce the following definition of $Cl_{(\gamma,\gamma')}(A)$.

Definition 6.3.5: Let $p_x^{\lambda} \in S(X)$ and $A \in I^{X}$. Then the fuzzy (γ, γ') -closure of A, denoted by $\operatorname{Cl}_{(\gamma,\gamma')}(A)$, given by :

 $p_x^{\lambda} \in Cl_{(\gamma,\gamma')}(A)$ iff $(\gamma(V) \bigcup \gamma(W)) \neq A$ for each open q-neighborhoods V and W of p_x^{λ} .

Theorem 6.3.6: Let A be a fuzzy subset of (X,T). Then

 $\operatorname{Cl}_{(\gamma,\gamma')}(A) = \operatorname{Cl}_{\gamma}(A) \bigcup \operatorname{Cl}_{\gamma'}(A)$ holds, where $\operatorname{Cl}_{\gamma}(A)$ and $\operatorname{Cl}_{\gamma'}(A)$ are γ -closure and

 γ' -closure of A respectively .

Proof: We have

$$p_x^{\lambda} \notin \operatorname{Cl}_{(\gamma,\gamma')}(A).$$

 \Leftrightarrow There exist open q-neighborhoods V and W of p_x^{λ} such that

 $\gamma(V) \cup \gamma(W)$ is not quasi-concident with A.

 \Leftrightarrow There exist open q-neighborhoods V and W of p_x^{λ} such that

 $(\gamma(V) \bigcup \gamma(W))(x) + A(x) \le 1.$

 \Leftrightarrow There exist open q-neighborhoods V and W of p_x^{λ} such that

 $\max \left\{ \gamma(V)(x), \ \gamma'(W)(x) \right\} + A(x) \leq 1.$

 \Leftrightarrow There exist open q-neighborhoods V and W of p_x^{λ} such that

 $\gamma(V)(x) + A(x) \le 1$ and $\gamma'(W) + A(x) \le 1$.

$$\Leftrightarrow p_x^{\lambda} \notin \operatorname{Cl}_{\gamma}(A) \text{ and } p_x^{\lambda} \notin \operatorname{Cl}_{\gamma'}(A).$$

$$\Leftrightarrow \operatorname{Cl}_{\gamma}(A)(x) < \lambda \text{ and } \operatorname{Cl}_{\gamma'}(A)(x) < \lambda.$$

$$\Leftrightarrow \operatorname{Max} \{ \operatorname{Cl}_{\gamma}(A)(x), \operatorname{Cl}_{\gamma'}(A)(x) \} < \lambda.$$

$$\Leftrightarrow p_{x}^{\lambda} \notin \operatorname{Cl}_{\gamma}(A) \bigcup \operatorname{Cl}_{\gamma'}(A).$$

Hence $\operatorname{Cl}_{(\gamma,\gamma')}(A) = \operatorname{Cl}_{\gamma}(A) \bigcup \operatorname{Cl}_{\gamma'}(A)$.

Theorem 6.3.7: For a fuzzy subset A of (X,T) the following properties hold.

- (i) $A \subseteq Cl(A) \subseteq Cl_{(\gamma,\gamma')}(A) \subseteq T_{(\gamma,\gamma')}$ -Cl(A)
- (ii) If $A \subseteq B$ then $\operatorname{Cl}_{(\gamma,\gamma')}(A) \subseteq \operatorname{Cl}_{(\gamma,\gamma')}(B)$

Proof: (i). By Theorem 6.3.6 and theorem 3.3.6, it is shown that

$$\operatorname{Cl}_{(\gamma,\gamma')}(A) = \operatorname{Cl}_{\gamma}(A) \bigcup \operatorname{Cl}_{\gamma'}(A) \supseteq \operatorname{Cl}(A).$$

Now we show that $\operatorname{Cl}_{(\gamma,\gamma')}(A) \subseteq T_{(\gamma,\gamma')}$ -Cl(A).

Let $p_x^{\lambda} \notin T_{(\gamma,\gamma')}$ -Cl(A).Then there exists an fuzzy (γ,γ') -open V such that $p_x^{\lambda} \neq V$ and V is not quasi-concident with A. Since V is fuzzy (γ,γ') -open set, so there exists open Q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cup \gamma'(S) \subseteq V$. Therefore $\gamma(W) \cup \gamma'(S)$ is not quasi-concident with A. Then we have $p_x^{\lambda} \notin Cl_{(\gamma,\gamma')}(A)$. Hence

$$\operatorname{Cl}_{\gamma}(A) \subseteq T_{(\gamma,\gamma')}$$
-Cl(A). Thus we have $A \subseteq \operatorname{Cl}(A) \subseteq \operatorname{Cl}_{(\gamma,\gamma')}(A) \subseteq T_{(\gamma,\gamma')}$ -Cl(A).

(ii) Let $p_x^{\lambda} \in \operatorname{Cl}_{(\gamma,\gamma')}(A)$. Let W and S be fuzzy open q-neighborhoods of p_x^{λ} . Then we have $(\gamma(W) \bigcup \gamma(S)) \neq A$. Since $A \subseteq B$ so we get $(\gamma(W) \bigcup \gamma(S)) \neq B$. This shows

$$p_x^{\lambda} \in \operatorname{Cl}_{(\gamma,\gamma')}(B)$$
. Hence $\operatorname{Cl}_{(\gamma,\gamma')}(A) \subseteq \operatorname{Cl}_{(\gamma,\gamma')}(B)$.

Theorem 6.3.8: Let A be a fuzzy subset of (X,T).

i. A is fuzzy (γ, γ') -closed if and only if $\operatorname{Cl}_{(\gamma, \gamma')}(A) = A$.

- ii. $T_{(\gamma,\gamma')}$ -Cl(A)=A if and only if Cl_{(\gamma,\gamma')}(A) =A.
- iii. A is fuzzy (γ, γ') -open if and only if $Cl_{(\gamma, \gamma')}(A^c) = A^c$.

Proof: (i) (Necessity): we prove that $\operatorname{Cl}_{(\gamma,\gamma')}(A) \subseteq A$. Let $p_x^{\lambda} \notin A$. Then

 $p_x^{\lambda} \neq A^c$. Since A^c is fuzzy (γ, γ') -open, there exists open Q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \bigcup \gamma(S) \subseteq A^c$ and so $\gamma(W) \bigcup \gamma(S)$ is not quasi-concident with A. It shows that $p_x^{\lambda} \notin Cl_{\gamma}(A)$. Hence $Cl_{(\gamma,\gamma')}(A) \subseteq A$. Again by theorem 6.3.7(i), we have $A \subseteq Cl_{(\gamma,\gamma')}(A)$. Thus $Cl_{(\gamma,\gamma')}(A) = A$.

(Sufficiency): We want to prove that $A^c A^c$ is fuzzy (γ, γ') -open. Let Let $p_x^{\lambda} q A^c$. Then $p_x^{\lambda} \notin A = \operatorname{Cl}_{(\gamma,\gamma')}(A)$ and there exists fuzzy open q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \bigcup \gamma(S)$ is not quasi-concident with A This implies that $\gamma(W) \bigcup \gamma(S)) \subseteq A^c$. Therfore A^c is fuzzy (γ, γ') -open so that A is (γ, γ') -closed.

(ii) It is proved by (i) and theorem 6.3.3 (ii).

(iii) It follows from (i) and definition 6.3.1.

Theorem 6.3.9: For a fuzzy subset A of (X, T), the following properties hold:

(i) If (X,T) is fuzzy (γ, γ') -regular space then $Cl(A) = Cl_{(\gamma, \gamma')}(A) = T_{(\gamma, \gamma')}-Cl(A)$

(ii) $\operatorname{Cl}_{(\gamma,\gamma')}(A)$ is fuzzy closed subset of (X,T).

(iii) $T_{(\gamma,\gamma')}$ -Cl(Cl $_{(\gamma,\gamma')}(A)$) = $T_{(\gamma,\gamma')}$ -Cl(A) = Cl $_{(\gamma,\gamma')}(T_{(\gamma,\gamma')}$ -Cl(A))

Proof: (i) By theorem 6.2.5 (i), we have $T = T_{(\gamma,\gamma')}$ and hence $Cl(A) = T_{(\gamma,\gamma')}$ -Cl(A). By

using theorem 6.3.7 (i), it is shown that $\operatorname{Cl}(A) = \operatorname{Cl}_{(\gamma,\gamma')}(A) = T_{(\gamma,\gamma')} - \operatorname{Cl}(A)$.

(ii) It follows from Theorem 6.3.5 and theorem 3.3.6(iii) that

$$\operatorname{Cl}(\operatorname{Cl}_{(\gamma,\gamma')}(A)) = \operatorname{Cl}(\operatorname{Cl}_{\gamma}(A) \bigcup \operatorname{Cl}_{\gamma'}(A)) = \operatorname{Cl}(\operatorname{Cl}_{\gamma}(A)) \bigcup \operatorname{Cl}(\operatorname{Cl}_{\gamma'}(A)) =$$

 $\operatorname{Cl}_{\gamma}(A) \bigcup \operatorname{Cl}_{\gamma'}(A) = \operatorname{Cl}_{(\gamma,\gamma')}(A).$

(iii) By the theorem 6.3.4(iii) we have $T_{(\gamma,\gamma')}$ -Cl(A) is fuzzy γ -closed subset of X. Then by theorem 6.3.8(i) we get $T_{(\gamma,\gamma')}$ -Cl(A) = Cl $_{(\gamma,\gamma')}$ ($T_{(\gamma,\gamma')}$ -Cl(A)). Again by theorem 6.3.7 (i) we have $A \subseteq Cl_{(\gamma,\gamma')}$ (A). Then by theorem 6.3.4(ii) we get $T_{(\gamma,\gamma')}$ -Cl(A) $\subseteq T_{(\gamma,\gamma')}$ -Cl(Cl $_{(\gamma,\gamma')}$ (A)). Since by theorem 6.3.7(i) $Cl_{(\gamma,\gamma')}(A) \subseteq T_{(\gamma,\gamma')}$ -Cl(A), we obtain that $Cl_{(\gamma,\gamma')}(A) \subseteq T_{(\gamma,\gamma')}$ -Cl(A) $\subseteq T_{(\gamma,\gamma')}$ -Cl(Cl $_{(\gamma,\gamma')}$ (A)).By using these inclusions and theorem 6.3.4 (ii), we obtain that

$$T_{(\gamma,\gamma')} - \operatorname{Cl}\left(\operatorname{Cl}_{(\gamma,\gamma')}(A)\right) \subseteq T_{(\gamma,\gamma')} - \operatorname{Cl}(\tau_{(\gamma,\gamma')} - \operatorname{Cl}(A)) \subseteq T_{(\gamma,\gamma')} - \operatorname{Cl}\left(T_{(\gamma,\gamma')} - \operatorname{Cl}(\operatorname{Cl}_{(\gamma,\gamma')}(A))\right).$$

By theorem 6.3.4 (iii) it can be written as

$$T_{(\gamma,\gamma')}$$
-Cl (Cl $_{(\gamma,\gamma')}(A)$) $\subseteq T_{(\gamma,\gamma')}$ -Cl(A) $\subseteq (T_{(\gamma,\gamma')}$ -Cl(Cl $_{(\gamma,\gamma')}(A)$). Thus we get

 $T_{(\gamma,\gamma')}$ -Cl(A)= $T_{(\gamma,\gamma')}$ -Cl (Cl_(γ,γ')(A)) and hence

$$T_{(\gamma,\gamma')}$$
-Cl (Cl $_{(\gamma,\gamma')}$ (A)) = $T_{(\gamma,\gamma')}$ -Cl(A)= Cl $_{(\gamma,\gamma')}$ ($T_{(\gamma,\gamma')}$ -Cl(A)).

Theorem 6.3.10: Let γ and γ' be fuzzy operations and A a fuzzy subset of (X, T).

If
$$T_{\gamma} = T_{\gamma'}$$
 holds, then

- (i) $Cl_{(\gamma,\gamma')}(A) = T_{(\gamma,\gamma')}-Cl(A)$, and
- (ii) $\operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A)) = \operatorname{Cl}_{(\gamma,\gamma')}(A)$.i.e. $\operatorname{Cl}_{(\gamma,\gamma')}(A)$ is fuzzy (γ,γ') -closed set..

Proof: (i) By (6.2.3), we have $T_{(\gamma,\gamma')} = T_{\gamma} = T_{\gamma'}$ and hence

 $\tau_{(\gamma,\gamma')} - \text{Cl}(A) = T_{\gamma} - \text{Cl}(A) = T_{\gamma'} - \text{Cl}(A). \text{ Now using Theorem 6.3.6 , we obtain } T_{(\gamma,\gamma')} - \text{Cl}(A) = T_{\gamma} - \text{Cl}(A) \bigcup T_{\gamma'} - \text{Cl}(A) = \text{Cl}_{\gamma}(A) \bigcup \text{Cl}_{\gamma'}(A) = \text{Cl}_{(\gamma,\gamma')}(A).$

(ii) It is proved by Theorem (i) and Theorem 6.3.9(iii).

6.4 Fuzzy (γ, γ') -separations axioms:

In this section we introduce fuzzy (γ, γ') -g-closed set and fuzzy $(\gamma, \gamma') - T_i (i = 1, 2, \frac{1}{2})$ spaces and obtain some their properties. Throughout this section, γ and γ' be given two fuzzy operations on fuzzy topology T and $X \times X$ the fuzzy product of X and $\Delta(X) = \{(p_x^{\lambda}, p_x^{\lambda}) : p_x^{\lambda} \in S(X)\}.$

Definition 6.4.1: A fts (X,T) is called fuzzy $(\gamma,\gamma')-T_1$ iff for each $(p_x^{\lambda}, p_y^{k}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U and V of p_x^{λ} and p_y^{k} respectively such that $p_y^{k} \overline{q} \gamma(U)$ and $p_x^{\lambda} \overline{q} \gamma'(V)$

Remark 6.4.2: For given two distinct fuzzy points p_x^{λ} and p_y^k , the fuzzy $(\gamma, \gamma') - T_1$ axioms requires that there exists open Q-neighbourhoods U, W of p_x^{λ} and V, S of p_y^k respectively such that $p_y^k \overline{q} \gamma(U)$ and $p_x^{\lambda} \overline{q} \gamma'(V)$, and $p_y^k \overline{q} \gamma'(W)$ and $p_x^{\lambda} \overline{q} \gamma(S)$. Clearly (X,T) is fuzzy $(\gamma, \gamma) - T_1$ if and only if (X,T) is $\gamma - T_1$.

Definition 6.4.3: A fts (X,T) is called fuzzy $(\gamma,\gamma')-T_2$ iff for each $(p_x^{\lambda}, p_y^{k}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U and V of p_x^{λ} and p_y^{k} respectively such that $\gamma(U)\overline{q}\gamma'(V)$.

Remark 6.4.4: For given two distinct fuzzy points p_x^{λ} and p_y^k , the fuzzy $(\gamma, \gamma') - T_2$ axioms requires that there exists open Q-neighbourhoods U, W of p_x^{λ} and V, S of p_y^k such that $\gamma(U)\overline{q}\gamma'(V)$ and $\gamma'(W)\overline{q}\gamma(S)$. Clearly (X,T) is fuzzy $(\gamma, \gamma) - T_2$ if and only if (X,T) is $\gamma - T_2$.

Theorem 6.4.5: A space (X,T) is fuzzy $(\gamma,\gamma')-T_1$ if and only any fuzzy singletons in X is a fuzzy (γ,γ') -closed set.

Proof: (Necessity): Let (X,T) be a fuzzy $(\gamma,\gamma')-T_1$ and $p_x^{\lambda} \in S(X)$. Since $p_x^{\lambda} \subseteq cl_{(\gamma,\gamma')}(p_x^{\lambda})$, so it is only need to prove $cl_{(\gamma,\gamma')}(p_x^{\lambda}) \subseteq p_x^{\lambda}$. Let $p_y^k \notin p_x^{\lambda}$. Then for each $(p_x^{\lambda}, p_y^{\lambda}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U and V of p_x^{λ} and p_y^{λ} respectively such that $p_y^{\lambda} \overline{q} \gamma(U)$ and $p_x^{\lambda} \overline{q} \gamma'(V)$. Also for each $(p_y^{\lambda}, p_x^{\lambda}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods W of p_y^{λ} and S of p_x^{λ} such that $p_y^{\lambda} \overline{q} \gamma(S)$. Therefore we have $(\gamma(S) \cup \gamma'(V)) \overline{q} p_x^{\lambda}$. This means that $p_y^{\lambda} \notin cl_{(\gamma,\gamma')}(p_x^{\lambda}) \subseteq p_x^{\lambda}$

(sufficiency): Let p_x^{λ} , $p_y^k \in S(X)$ and $p_x^{\lambda} \neq p_y^k$. Since p_x^{λ} and p_y^k are both (γ, γ') -closed set, $cl_{(\gamma,\gamma')}(p_x^{\lambda}) = p_x^{\lambda}$ and $cl_{(\gamma,\gamma')}(p_y^k) = p_y^k$. Since $p_x^{\lambda} \neq p_y^k$, then $p_y^k \notin cl_{(\gamma,\gamma')}(p_x^{\lambda})$ and $p_x^{\lambda} \notin cl_{(\gamma,\gamma')}(p_y^{\lambda})$. Therefore, there exists open Q-neighbourhoods U,W of p_x^{λ} and V,S of p_y^k such that $(\gamma(U) \cup \gamma'(W))\overline{q}p_y^k$ and $(\gamma(V) \cup \gamma'(S))\overline{q}p_x^{\lambda}$. This implies such that $p_y^k\overline{q}\gamma(U)$ and $p_x^{\lambda}\overline{q}\gamma'(S)$, and $p_x^{\lambda}\overline{q}\gamma(V)$ and $p_y^k\overline{q}\gamma'(W)$. Thus for each $(p_x^{\lambda}, p_y^k) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods A and B of p_x^{λ} and p_y^k respectively such that $p_y^k\overline{q}\gamma(A)$ and $p_x^{\lambda}\overline{q}\gamma'(B)$. This implies (X,T) is fuzzy $(\gamma, \gamma') - T_1$ spaces.

Theorem 6.4.6: If a space (X,T) is fuzzy $(\gamma, \gamma') - T_2$, then it is fuzzy $(\gamma, \gamma') - T_1$.

Proof: Let (X,T) be a fuzzy $(\gamma, \gamma') - T_2$ space. Then for each $(p_x^{\lambda}, p_y^{\lambda}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U and V of p_x^{λ} and p_y^{k} respectively such that $\gamma(U)\overline{q}\gamma'(V)$.Since $p_x^{\lambda}q\gamma(U)$, $p_y^{k}q\gamma(V)$ and $p_x^{\lambda} \neq p_y^{k}$, therefore $p_x^{\lambda}\overline{q}\gamma'(V)$ and $p_y^{k}\overline{q}\gamma(U)$. Hence (X,T) is $(\gamma, \gamma') - T_1$. **Definition 6.4.7:** Let (X,T) be a fts and γ an operation on T. A fuzzy set $A \in I^X$ is called (γ, γ') -generalized closed $((\gamma, \gamma')$ -g-closed, for short) if $cl_{(\gamma,\gamma')}(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy (γ, γ') -open in (X,T).

Theorem 6.4.8: Every fuzzy (γ, γ') -closed set is fuzzy (γ, γ') -g-closed.

Proof: Obvious. The converse is not true as shown by the following example.

Example 6.4.8: Let X = {x,y} and $T = \{X, \emptyset, p_{\gamma}^{0.7}\}$. Define $\gamma: T \to I^X$ by

 $\gamma(U) = cl(U) = \gamma'(U)$ for each $U \in T$. Let $A = p_x^{0.5} \bigcup p_y^{0.6}$. Then A is fuzzy

 (γ, γ') -g.closed set but not fuzzy (γ, γ') -closed set.

Definition 6.4.9: A space (X,T) is called a fuzzy $(\gamma, \gamma') - T_{\gamma_{\gamma}}$ space if every fuzzy

 (γ, γ') -g-closed set of (X,T) is fuzzy (γ, γ') -closed

Theorem 6.4.10: For each $p_x^{\lambda} \in S(X)$, p_x^{λ} is (γ, γ') -closed or $(p_x^{\lambda})^{C}$ is fuzzy

 (γ, γ') -g.closed set in (X, T).

Proof: Suppose p_x^{λ} is not (γ, γ') -closed. Then $(p_x^{\lambda})^C$ is fuzzy (γ, γ') -open. Let U be any fuzzy (γ, γ') -open set such that $(p_x^{\lambda})^C \subseteq U$. Since U = X is the only fuzzy (γ, γ') -open, $cl_{(\gamma, \gamma')}((p_x^{\lambda})^C) \subseteq U$. Therefore $(p_x^{\lambda})^C$ is fuzzy (γ, γ') -g.closed set.

6.5. Fuzzy $[\gamma, \gamma']$ -open sets and its properties:

In this section, we introduce an altenative fuzzy bioperation-open sets of type $[\gamma, \gamma']$ and investigate relations between it and that of fuzzy (γ, γ') -open sets and fuzzy γ -open sets [chapter-3] are investigated

Definition 6.5.1: A fuzzy subset A of (X, T) will be called a fuzzy $[\gamma, \gamma']$ -open set if for each $p_x^{\lambda} \neq A$, there exists open q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \cap \gamma(V) \subseteq A$.

Theorem 6.5.2: Let A be a fuzzy subset of (X, T).

(i) If A is fuzzy γ -open and B is fuzzy γ' -open then A \cap B is fuzzy $[\gamma, \gamma']$ -open.

(ii) If A is fuzzy [γ, γ'] -open, then A is open

(iii) If A_j is fuzzy $[\gamma, \gamma']$ -open for every $j \in J$, then $\bigcup \{A_j \mid j \in J\}$ is fuzzy (γ, γ') -open.

(iv) If A is fuzzy γ -open, then A is fuzzy $[\gamma, \gamma']$ –open for any fuzzy operation γ' .

(v) If (X, T) is fuzzy γ - regular space and A is fuzzy [γ, γ']-open for a fuzzy operation γ' , then A is γ -open.

Proof: (i) Let $p_x^{\lambda} q A \cap B$. Then $p_x^{\lambda} q A$ and $p_x^{\lambda} q B$. Since A and B are fuzzy γ -open and fuzzy γ' -open respectively, there exist open q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \subseteq A$ and $\gamma'(V) \subseteq B$.

Now

 $(\gamma(U) \cap \gamma'(V))(x) = \min \{ \gamma(U)(x), \gamma'(V)(x) \}$ $\leq \min \{ A(x), B(x) \}$ $= (A \cap B)(x)$

Hence $\gamma(U) \cap \gamma'(V) \subseteq A \cap B$ and so $A \cap B$ is fuzzy $[\gamma, \gamma']$ -open.

(ii) Let A be fuzzy $[\gamma, \gamma']$ -open and p_x^{λ} q A. Then for p_x^{λ} q A, there exists Q-nbds

 U_x and V_x of p_x^{λ} such that $\gamma(U_x) \cap \gamma'(V_x) \subseteq A$. But by definition of γ we have

 $U_x \subseteq \gamma(U_x)$ and $V_x \subseteq \gamma(V_x)$. Hence we have $U_x \cap V_x \subseteq A$. Since U_x and V_x open

Q-neighborhoods, so $V_x \cap V_x = W_x$ (say) is also open q-neighborhood of p_x^{λ} . Thus we have $W_x \subseteq A$. This shows A is open.

(iii) Let $B = \bigcup \{ A_j \mid j \in J \}$ and $p_x^{\lambda} q B$. Then there exists some $A_j \in T$ such that $p_x^{\lambda} q A_j$. A_j. Since A_j is fuzzy $[\gamma, \gamma']$ -open, there exists open q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \cap \gamma'(V) \subseteq A_j$. Therefore $(\gamma(U) \cap \gamma'(V))(x) \leq A_j(x)$ and so $(\gamma(U) \cap \gamma'(V))(x) \leq Sup\{A_j(x) \mid j \in J \}$. This implies $\gamma(U) \cap \gamma'(V) \subseteq B$ and hence B is fuzzy $[\gamma, \gamma']$ -open.

- (iv) Let $p_x^{\lambda} q A$. Since A is fuzzy γ -open set there exist a open q-neighborhoods U of p_x^{λ} such that $\gamma(U) \subseteq A$
- Now $\gamma(U) \subseteq A$

$$\Rightarrow \gamma(U)(x) \leq A(x)$$

 $\Rightarrow \min \{ \gamma(U)(x), \gamma'(V)(x) \} \le A(x) \text{ where V is q-neighborhood of } p_x^{\lambda} \text{ and } \gamma' \text{ is any}$ fuzzy operation.

Hence $\gamma'(U) \cap \gamma'(V) \subseteq A$ and so A is fuzzy $[\gamma, \gamma']$ -open.

(v) Let p_x^{λ} q A. Since A is fuzzy γ -open then for each p_x^{λ} q A there exist open

Q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \cap \gamma'(V) \subseteq A$.

Now

$$\gamma(U) \cap \gamma'(V) \subseteq A$$

 $\Rightarrow \min \{ \gamma(U)(x), \gamma'(V)(x) \} \le A(x)$

 \Rightarrow min { U(x), V(x) } \leq A(x) by definition of γ

 \Rightarrow U \cap V \subseteq A

Since U and V are open q-neighborhood of p_x^{λ} therefore U \cap V is also a open Qneighborhood of p_x^{λ} and let U \cap V = W. Then we have W \subseteq A. Again since (X, T) is fuzzy γ -regular space, there exist a open q-neighborhood S of p_x^{λ} such that $\gamma(S) \subseteq W$ and hence $\gamma(S) \subseteq A$. This shows A is fuzzy γ -open.

Definition 6.5.3: The set of all fuzzy $[\gamma, \gamma']$ -open sets of (X, T) is denoted by $T_{[\gamma, \gamma']}$.

Remark 6.5.4: The following relation 6.5.5 is shown by proposition 6.5.2 (i), (ii), and (iv)

 $(6.5.5): T_{\gamma} \cap T_{\gamma} = T_{\gamma} \subseteq T_{\gamma} \cup T_{\gamma'} \subseteq T_{[\gamma,\gamma']} \subseteq T.$

Theorem 6.5.6: Let γ and γ' be fuzzy regular operations.

(i) If A and B are $[\gamma, \gamma']$ -open sets, then A \cap B is $[\gamma, \gamma']$ -open.

(ii) $T_{[\gamma,\gamma']}$ is a fuzzy topology on X.

Proof: (i) Let $p_x^{\lambda} q$ (A \cap B). Then $p_x^{\lambda} q$ A and $p_x^{\lambda} q$ B. Since A and B are fuzzy $[\gamma, \gamma']$ open, there exist open q-neighborhoods U, V, W, and S of p_x^{λ} such that $\gamma(U) \cap \gamma'(V) \subseteq A$ and $\gamma(W) \cap \gamma'(S) \subseteq B$. Since γ and γ' are fuzzy regular operations, there exist open qneighborhoods E and F of p_x^{λ} such that $\gamma(E) \subseteq \gamma(U) \cap \gamma(W)$ and $\gamma'(F) \subseteq \gamma'(V) \cap \gamma'(S)$.
Now

$$(\gamma(E) \cap \gamma'(F))(x) = \min \{ (\gamma(E)(x), \gamma'(F))(x) \}$$

$$\leq \min \{ (\gamma(U) \cap \gamma(W))(x), (\gamma'(V) \cap \gamma'(S))(x) \}$$

$$= \min \{ (\gamma(U) \cap \gamma'(V))(x), (\gamma(W) \cap \gamma'(S))(x) \}$$

$$\leq \min \{ A(x), B(x) \}$$

Thus $\gamma(E) \cap \gamma'(F) \subseteq A \cap B$. This shows $A \cap B$ is $[\gamma, \gamma']$ -open (ii) 0 and 1 are fuzzy $[\gamma, \gamma']$ -open sets together with (i) and theorem 6.5.2 (iii) $T_{[\gamma, \gamma']}$ is fuzzy topology on X. **Definition 6.5.7:** A fuzzy topological space (X, T) is said to be fuzzy $[\gamma, \gamma']$ -regular space if for each fuzzy point $p_x^{\lambda} \in S(X)$ and every open Q-neighborhood U of p_x^{λ} , there exists open Q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cap \gamma'(S) \subseteq U$.

Theorem 6.5.8: Let (X, T) be fuzzy topological space.

(i) (X, T) is fuzzy $[\gamma, \gamma']$ -regular if and only $T_{(\gamma, \gamma')} = T$ holds.

(ii) If (X, T) is fuzzy γ -regular and fuzzy γ' -regular space, then it is fuzzy $[\gamma, \gamma']$ -regular.

Proof: (i) (Necessity): Since $T_{[\gamma,\gamma']} \subseteq T$, it is sufficient to prove $T \subseteq T_{[\gamma,\gamma']}$. Let $A \in T$ and $p_x^{\lambda} q A$. Then $A(x) > 1 - \lambda$ and so A is open q-neighborhood of p_x^{λ} . Since (X, T) is fuzzy $[\gamma, \gamma']$ -regular, there exists open q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cap \gamma'(S) \subseteq A$. Thus we have proved that for each $p_x^{\lambda} q A$ there exist open qneighborhoods W and S of p_x^{λ} such that $\gamma(W) \cap \gamma'(S) \subseteq A$. This shows that A is fuzzy $[\gamma, \gamma']$ -open set.

(sufficiency): Let p_x^{λ} be a fuzzy point in X and let V be an open Q-neighborhood of p_x^{λ} . Since $T_{[\gamma,\gamma']} = T$, V is fuzzy $[\gamma, \gamma']$ -open set. Therefore there exists open

Q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cap \gamma'(S) \subseteq V$. This shows (X,T) is fuzzy $[\gamma, \gamma']$ -regular.

(iii) Let (X, T) be fuzzy γ -regular and fuzzy γ' -regular space. Let p_x^{λ} be a fuzzy point in X. Since (X, T) is fuzzy γ -regular and fuzzy γ' -regular, so for every open

Q-neighborhoods U and V of p_x^{λ} there exist open q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \subseteq U$ and $\gamma'(S) \subseteq V$.

Now

$$(\gamma(W) \cap \gamma'(S))(x) = \min \{ \gamma(W)(x), \gamma'(S)(x) \}$$

 $\leq \min \{ U(x), V(x) \}$
 $= U(x) \text{ or } V(x)$

Thus $\gamma(W) \cap \gamma'(S) \subseteq U$ or $\gamma(W) \cap \gamma'(S) \subseteq V$. In both cases we can say that (X, T) is fuzzy $[\gamma, \gamma']$ -regular.

6.6: Fuzzy [γ, γ']-closures:

We introduce $[\gamma, \gamma']$ -closure of a set and investigate some properties of $[\gamma, \gamma']$ -closed sets.

Definition 6.6.1: A fuzzy subset A of (X, T) is said to be fuzzy $[\gamma, \gamma']$ -closed set if its complement A^c is fuzzy fuzzy $[\gamma, \gamma']$ -open.

Definition 6.6.2 : For a fuzzy subset A of (X, T) and $T_{[\gamma, \gamma']}$, $T_{[\gamma, \gamma']}$ -Cl(A) denotes the intersection of all $[\gamma, \gamma']$ -closed sets containing A i.e.

$$T_{[\gamma,\gamma']}\text{-Cl}(A) = \inf \{ F : A \subseteq F, F \in T_{[\gamma,\gamma']} \}.$$

The following theorem characterizes $T_{[\gamma,\gamma']}$ -Cl(A).

Theorem 6.6.3: For a fuzzy point p_x^{λ} in X, $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A) if and only V q A for any $V \in T_{[\gamma,\gamma']}$ and p_x^{λ} q V.

Proof : We have

 $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A)if and only if for every fuzzy $[\gamma, \gamma']$ -closed set $F \supseteq A$, $p_x^{\lambda} \in F$. i.e. $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A)if and only if for every fuzzy (γ, γ') -closed set $F \supseteq A$, $F(x) \ge \lambda$. By taking complement this fact can be stated as follows: $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A) if and only if for every fuzzy (γ, γ') -open set $V \subseteq A^c$, $V(x) \le 1-\lambda$. In other words, $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A) if and only if for every fuzzy $[\gamma, \gamma']$ -open set V satisfying $V(x) > 1-\lambda$, V is not contained in A^c . i.e $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A) if and only if V q A for any $V \in T_{[\gamma,\gamma']}$ and $p_x^{\lambda} \neq V$.

Theorem 6.6.4: Let A and B be fuzzy subsets of (X,T).

- (i) $A \subseteq T_{[\gamma,\gamma']}$ -Cl(A),
- (ii) If $A \subseteq B$, then $T_{[\gamma,\gamma']}$ -Cl(A) $\subseteq T_{[\gamma,\gamma']}$ -Cl(B)
- (iii) A is fuzzy $[\gamma, \gamma']$ -closed if and only if $T_{[\gamma, \gamma']}$ -Cl(A) = A.
- (iv) $T_{[\gamma,\gamma']}$ -Cl(A) is fuzzy $[\gamma,\gamma']$ -closed set.

Proof: (i) It is obvious

(ii) Let $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A). Let V fuzzy (γ, γ') -open set and $p_x^{\lambda} \neq 0$. Then we have

V q A. Since A \subseteq B, then V q B. This shows $p_x^{\lambda} \in T_{[\gamma,\gamma]}$ -Cl(B) and hence

 $T_{[\gamma,\gamma']}$ -Cl(A) $\subseteq T_{[\gamma,\gamma']}$ -Cl(B)

(iii) (Necessity): Let A be $[\gamma, \gamma']$ -closed set. Then by definition $T_{[\gamma, \gamma']}$ -Cl(A) = A.

(Sufficiency): Let $T_{[\gamma,\gamma']}$ -Cl(A) = A. We prove that A^c is fuzzy $[\gamma, \gamma']$ -open set. Let

 $p_x^{\lambda} q A^c$. Then we have $p_x^{\lambda} \notin A = T_{[\gamma,\gamma']}$ -Cl(A)and consequently there exists a fuzzy $[\gamma,\gamma']$ open set V and $p_x^{\lambda} q$ V such that V is not quasi-concident with A. Therefore we have $V \subseteq A^c$. Since V is fuzzy $[\gamma,\gamma']$ -open set, so for $p_x^{\lambda} q$ V, there exists open q-neighborhoods
W and S of p_x^{λ} such that $\gamma(W) \cap \gamma'(S) \subseteq V$. Hence we have $\gamma(W) \cap \gamma'(S) \subseteq A^c$. This
shows A^c is fuzzy $[\gamma,\gamma']$ -open set and hence A is fuzzy $[\gamma,\gamma']$ -closed.

(iv) Here we prove that $T_{[\gamma,\gamma']}$ -Cl $(T_{[\gamma,\gamma']}$ -Cl(A)) = $T_{[\gamma,\gamma']}$ -Cl(A). Let us put

 $G = T_{[\gamma,\gamma']}$ -Cl($T_{[\gamma,\gamma']}$ -Cl(A)) and $H = T_{[\gamma,\gamma']}$ -Cl(A). Let $p_x^{\lambda} \in G$ and V be fuzzy γ -open set and $p_x^{\lambda} q$ V. Then we have V q H for each fuzzy $[\gamma, \gamma']$ -open set V and $p_x^{\lambda} q$ V. This implies V(x) +H(x) > 1 for some $x \in X$. Let H(x) = r, r $\in [0,1]$. Then

 $p_x^r \in H = T_{[\gamma,\gamma']}$ -Cl(A) and V is fuzzy $[\gamma,\gamma']$ -open set and $p_x^r \neq V$. Therefore V $\neq A$ and so $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A).

Again, let $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A).Then by (i), $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl $T_{[\gamma,\gamma']}$ -Cl(A))). Thus we have shown that $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl $(\tau_{[\gamma,\gamma']}$ -Cl(A)) $\Leftrightarrow p_x^{\lambda} \in (T_{[\gamma,\gamma']}$ -Cl(A)).

Hence $T_{[\gamma,\gamma']}$ -Cl $(T_{(\gamma,\gamma')}$ -Cl(A)) = $T_{[\gamma,\gamma']}$ -Cl(A) and by (iii) $T_{[\gamma,\gamma']}$ -Cl(A) is fuzzy

 $[\gamma, \gamma']$ -closed set.

We introduce the following definition of $Cl_{(\chi,\chi')}(A)$.

Definition 6.6.5: A fuzzy point p_x^{λ} in X is in the fuzzy $[\gamma, \gamma']$ -closure of fuzzy set A of X i.e. in $\operatorname{Cl}_{(\gamma,\gamma')}(A)$ if $(\gamma(W) \cap \gamma'(S))$ q A for each open q-neighborhoods V and W of p_x^{λ} .

Theorem 6.6.6: For a fuzzy subset A of (X,T) the following properties hold.

(i)
$$A \subseteq Cl(A) \subseteq Cl_{[\gamma,\gamma']}(A) \subseteq T_{[\gamma,\gamma']} - Cl(A)$$

(ii) $\operatorname{Cl}_{[\gamma,\gamma']}(A) \subseteq \operatorname{Cl}_{(\gamma,\gamma')}(A)$

Proof: (i) Let $p_x^{\lambda} \in Cl(A)$. Let U and V be any open Q-neighborhood of p_x^{λ} . Then we have U q A and V q A. By the definition of γ , we get

 $\gamma(U) \neq A$ and $\gamma'(V) \neq A$. Therefore min{ $\gamma(U)(x), \gamma'(V)(x)$ } + A(x) > 1 for some x and so $(\gamma(W) \cap \gamma'(S)) \neq A$. This shows that $p_x^{\lambda} \in Cl_{[\gamma,\gamma']}(A)$.

Hence $\operatorname{Cl}(A) \subseteq \operatorname{Cl}_{[\gamma,\gamma']}(A)$. Now we show that $\operatorname{Cl}_{[\gamma,\gamma']}(A) \subseteq T_{[\gamma,\gamma']}$ -Cl(A).

Let $p_x^{\lambda} \notin T_{[\gamma,\gamma']}$ -Cl(A). Then there exists an fuzzy $[\gamma, \gamma']$ -open V such that $p_x^{\lambda} \neq V$ and V is not quasi-concident with A. Then we have $V(x) + A(x) \le 1$. Since V is fuzzy

 $[\gamma, \gamma']$ -open set, so there exists q-neighborhoods W and S of p_x^{λ} such that

 $\gamma(W) \cap \gamma'(S) \subseteq V$. Therefore $\gamma(W) \cap \gamma'(S)$ is not quasi-concident with A. Accordingly $p_x^{\lambda} \notin \operatorname{Cl}_{[\gamma,\gamma']}(A)$. Hence $\operatorname{Cl}_{[\gamma,\gamma']}(A) \subseteq T_{[\gamma,\gamma']}$ -Cl(A).

Thus we have $A \subseteq Cl(A) \subseteq Cl_{[\gamma,\gamma']}(A) \subseteq T_{[\gamma,\gamma']}$ -Cl(A).

(ii) Let $p_x^{\lambda} \in \operatorname{Cl}_{[\gamma,\gamma']}(A)$. Then we have $(\gamma(W) \cap \gamma'(S)) \neq A$ for every open

Q-neighborhoods W and S of p_x^{λ} .

Now

$$(\gamma(W) \cap \gamma'(S)) q A$$

- \Rightarrow min { $\gamma(W)(x)$, $\gamma'(S)(x)$ } + A(x) > 1 for some x
- $\Rightarrow \max \{ \gamma(W)(x), \gamma'(S)(x) \} + A(x) > 1$

$$\Rightarrow$$
 (γ (W) $\bigcup \gamma'$ (S)) q A

Thus $p_x^{\lambda} \in \operatorname{Cl}_{(\gamma,\gamma')}(A)$ and $\operatorname{Cl}_{[\gamma,\gamma']}(A) \subseteq T_{[\gamma,\gamma']}$ -Cl(A).

Theorem 6.6.7: Let A be a fuzzy subset of (X,T).

- (i) A is fuzzy $[\gamma, \gamma']$ -closed if and only if $\operatorname{Cl}_{[\gamma, \gamma']}(A) = A$.
- (ii) $T_{[\gamma,\gamma']}$ -Cl(A) = A if and only if Cl $_{[\gamma,\gamma']}$ (A). =A.
- (iii) A is fuzzy $[\gamma, \gamma']$ -open if and only if $\operatorname{Cl}_{[\gamma, \gamma']}(A^c) = A^c$

Proof: (i) (Necessity): we prove that $\operatorname{Cl}_{[\gamma,\gamma']}(A) \subseteq A$. Let $p_x^{\lambda} \notin A$. Then

 $p_x^{\lambda} \neq A^C$. Since A^C is fuzzy $[\gamma, \gamma']$ -open, there exist open Q-neighborhoods W and S of p_x^{λ} such that $\gamma(W) \cap \gamma(S) \subseteq A^c$ and so $\gamma(W) \cap \gamma(S)$ is not quasi-concident with A. Therefore $p_x^{\lambda} \notin \operatorname{Cl}_{[\gamma,\gamma']}(A)$ and $\operatorname{Cl}_{[\gamma,\gamma']}(A)$. $\subseteq A$. Again by theorem 6.6.6(i) we have $A \subseteq Cl_{[\gamma,\gamma']}(A)$. Thus we get $Cl_{[\gamma,\gamma']}(A) = A$.

(Sufficiency): We prove that A^c is fuzzy $[\gamma, \gamma']$ -open. Let $p_x^{\lambda} \neq A^c$. Then

 $p_x^{\lambda} \notin A = Cl_{[\gamma,\gamma]}(A)$ and consequently there exists fuzzy open Q-neighborhoods W

and S of p_x^{λ} such that $\gamma(W) \cap \gamma(S)$ is not quasi-concident with A. Hence we have

 $\gamma(W) \cap \gamma(S) \subseteq A^c$. This shows that A^c is fuzzy $[\gamma, \gamma']$ -open i.e. A is $[\gamma, \gamma']$ -closed.

- (ii). It is proved by (i) and theorem 6.6.4 (iii).
- (iii) It follows from (i) and definition 6.6.1

Theorem 6.6.8: For a fuzzy subset A of (X,τ) the following properties hold.

- (i) If (X,T) is fuzzy $[\gamma, \gamma']$ -regular space then $Cl(A) = Cl_{[\gamma, \gamma']}(A) = T_{[\gamma, \gamma']}$ -Cl(A)
- (ii) $Cl_{[\gamma,\gamma']}(A)$ is fuzzy closed subset of (X,T).

(iii)
$$T_{[\gamma,\gamma']}$$
-Cl(Cl $_{[\gamma,\gamma']}$ (A)) = $T_{[\gamma,\gamma']}$ -Cl(A) = Cl $_{[\gamma,\gamma']}$ ($T_{[\gamma,\gamma']}$ -Cl(A))

(iv) If
$$A \subseteq B$$
 then $\operatorname{Cl}_{[\gamma,\gamma']}(A) \subseteq \operatorname{Cl}_{[\gamma,\gamma']}(B)$

Proof: (i) By theorem 6.5.8(i), we have $T = T_{[\gamma,\gamma']}$ and hence $Cl(A) = T_{[\gamma,\gamma']}$ -Cl(A). By using theorem 6.6.6(i) it is shown that $Cl(A) = Cl_{[\gamma,\gamma']}(A) = T_{[\gamma,\gamma']}$ -Cl(A).

(ii) Here we want to prove that $Cl(Cl_{[\gamma,\gamma']}(A)) = Cl_{[\gamma,\gamma']}(A)$. Since

 $\mathrm{Cl}_{[\gamma,\gamma']}(A) \subseteq \mathrm{Cl}(\mathrm{Cl}_{[\gamma,\gamma']}(A), \text{ it is require to prove that } \mathrm{Cl}\,(\mathrm{Cl}_{[\gamma,\gamma']}(A)) \subseteq \mathrm{Cl}_{[\gamma,\gamma']}(A).$

Let $p_x^{\lambda} \in \operatorname{Cl}(\operatorname{Cl}_{[\gamma,\gamma']}(A))$. Let U and V be any open q-neighborhood of p_x^{λ} . Then we have U q $\operatorname{Cl}_{[\gamma,\gamma']}(A)$ and V q $\operatorname{Cl}_{[\gamma,\gamma']}(A)$.

Therefore

min { (U)(x), (V)(x) } + Cl<sub>[
$$\gamma,\gamma'$$
]</sub>(A)(x) > 1

 $\Rightarrow \min \{ (U)(x), (V)(x) \} + r > 1 \text{ where } Cl_{[\gamma, \gamma']}(A)(x) = r, r \in [0, 1].$

 \Rightarrow U(x) + r > 1 and V(x) + r > 1

 \Rightarrow U(x) > 1 - r and V(x) > 1 - r

 \Rightarrow U and V are open q-neighborhood of p_x^r .

Also $p_x^r \in \operatorname{Cl}_{[\gamma,\gamma']}(A)$. Therefore by definition 6.6.5 we have

 $(\gamma(U) \cap \gamma'(V)) \neq A$ and so $p_x^{\lambda} \in \operatorname{Cl}_{[\gamma,\gamma']}(A)$. Thus

 $\operatorname{Cl}(\operatorname{Cl}_{[\gamma,\gamma']}(A)) \subseteq \operatorname{Cl}_{[\gamma,\gamma']}(A).$

(iii) By the theorem 6.6.4 (iv), we have $T_{[\gamma,\gamma']}$ -Cl(A) is fuzzy $[\gamma,\gamma']$ -closed subset of X.

Then by theorem 6.6.7 (i) we get $T_{[\gamma,\gamma']}$ -Cl(A)= Cl_{$[\gamma,\gamma']$} ($T_{[\gamma,\gamma']}$ -Cl(A)).

Since $A \subseteq \operatorname{Cl}_{[\gamma,\gamma']}(A)$, $T_{[\gamma,\gamma']}$ -Cl(A) $\subseteq T_{[\gamma,\gamma']}$ -Cl(Cl $_{[\gamma,\gamma']}(A)$).

Then by theorem 6.6.6(i) we obtain that

$$\mathrm{Cl}_{[\gamma,\gamma']}(\mathrm{A}) \subseteq T_{[\gamma,\gamma']} \operatorname{-Cl}(\mathrm{A}) \subseteq T_{[\gamma,\gamma']} \operatorname{-Cl}(\mathrm{Cl}_{[\gamma,\gamma']}(\mathrm{A})).$$

By using these inclusions and theorem 6.6.4(ii) we have

$$T_{[\gamma,\gamma']} - \operatorname{Cl}(\operatorname{Cl}_{[\gamma,\gamma']}(A)) \subseteq T_{[\gamma,\gamma']} - \operatorname{Cl}(T_{[\gamma,\gamma']} - \operatorname{Cl}(A)) \subseteq T_{[\gamma,\gamma']} - \operatorname{Cl}(T_{[\gamma,\gamma']} - \operatorname{Cl}(\operatorname{Cl}_{[\gamma,\gamma']}(A)).$$

By theorem 6.6.4(iv) and 6.6.4(iii) it can be written as

$$T_{[\gamma,\gamma']}\text{-}\mathrm{Cl}\left(\mathrm{Cl}_{[\gamma,\gamma']}(\mathrm{A})\right) \subseteq T_{[\gamma,\gamma']}\text{-}\mathrm{Cl}(\mathrm{A}) \subseteq T_{[\gamma,\gamma']}\text{-}\mathrm{Cl}(\mathrm{Cl}_{[\gamma,\gamma']}(\mathrm{A})).$$

Thus $T_{[\gamma,\gamma']}$ -Cl(A) = $T_{[\gamma,\gamma']}$ -Cl (Cl $_{[\gamma,\gamma']}$ (A))

and hence $T_{[\gamma,\gamma']}$ -Cl (Cl $_{[\gamma,\gamma']}$ (A)) = $T_{[\gamma,\gamma']}$ -Cl(A) = Cl $_{[\gamma,\gamma']}$ ($T_{[\gamma,\gamma']}$ -Cl(A)).

(iv) It is obious.

Theorem 6.6.9: Let γ and γ' be open operations and A a fuzzy subset of (X, T).

Then the followings hold:

(i)
$$\operatorname{Cl}_{[\gamma,\gamma']}(A) = T_{[\gamma,\gamma']} \operatorname{-Cl}(A)$$
 and

(ii) $\operatorname{Cl}_{[\gamma,\gamma']}(\operatorname{Cl}_{[\gamma,\gamma']}(A)) = \operatorname{Cl}_{[\gamma,\gamma']}(A)$ i.e. $\operatorname{Cl}_{[\gamma,\gamma']}(A)$ is fuzzy (γ,γ') -closed set..

Proof: (i) By theorem 6.6.6(i), it suffices to prove that $T_{[\gamma,\gamma']}$ -Cl(A) \subseteq Cl_{$[\gamma,\gamma']$}(A).

Let $p_x^{\lambda} \in T_{[\gamma,\gamma']}$ -Cl(A). Let U and V be open q-neighborhood of p_x^{λ} . By the openness of γ and γ' , there exists a fuzzy γ -open set W and γ' -open set S such that $p_x^{\lambda} \neq W$ and W $\subseteq \gamma(U)$ and $p_x^{\lambda} \neq S$ and $S \subseteq \gamma'(V)$. By theorem 6.5.2 (i), W $\cap S$ is fuzzy $[\gamma, \gamma']$ -open set and then by theorem 6.6.3, we have (W $\cap S$) φ A and hence ($\gamma(U) \cap \gamma'(V)$) φ A. This shows $p_x^{\lambda} \in Cl_{[\gamma,\gamma']}(A)$. Thus $T_{[\gamma,\gamma']}$ -Cl(A) $\subseteq Cl_{[\gamma,\gamma']}(A)$.

(ii) This follows immediately from (i) and theorem 6.6.8(iii).

6.7. Fuzzy $[\gamma, \gamma']$ -separations axioms:

In this section we introduce fuzzy $[\gamma, \gamma']$ -g-closed set and fuzzy $[\gamma, \gamma'] - T_i$ $(i = 1, 2, \frac{1}{2})$ spaces and obtain their properties.

Throughout this section, let γ and γ' be given two fuzzy operations on fuzzy topology *T* and $X \times X$ the fuzzy product of X and $\Delta(X) = \{(p_x^{\lambda}, p_x^{\lambda}) : p_x^{\lambda} \in S(X)\}.$

Definition 6.7.1: A fts (X,T) is called fuzzy $[\gamma,\gamma']-T_1$ iff for each $(p_x^{\lambda}, p_y^{k}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U, V of p_x^{λ} and W,S of p_y^{k} such that $p_y^{k} \overline{q}(\gamma(U) \cap \gamma'(V))$ and $p_x^{\lambda} \overline{q}(\gamma(W) \cap \gamma'(S))$

Definition 6.7.2: A fts (X,T) is called fuzzy $(\gamma,\gamma')-T_2$ iff for each $(p_x^{\lambda}, p_y^{\lambda}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U, V of p_x^{λ} and W, S of p_y^{λ} such that $(\gamma(U) \cap \gamma'(V))\overline{q}(\gamma(W) \cap \gamma'(S))$.

Theorem 6.7.3: A space (X,T) is fuzzy $[\gamma,\gamma']-T_1$ if and only any fuzzy singleton in X is a fuzzy $[\gamma,\gamma']$ -closed set.

Proof: (Necessity): Let (X,T) be a fuzzy $[\gamma,\gamma']-T_1$ and $p_x^{\lambda} \in S(X)$. Since $p_x^{\lambda} \subseteq cl_{[\gamma,\gamma']}(p_x^{\lambda})$, so it is only need to prove $cl_{[\gamma,\gamma']}(p_x^{\lambda}) \subseteq p_x^{\lambda}$. Let $p_y^{k} \notin p_x^{\lambda}$. Then for each $(p_x^{\lambda}, p_y^{k}) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U, V of p_x^{λ} and W, S

of p_y^k such that $p_y^k \overline{q}(\gamma(U) \cap \gamma'(V))$ and $p_x^\lambda \overline{q}(\gamma(W) \cap \gamma'(S))$. Since $p_y^k \overline{q}(\gamma(U) \cap \gamma'(V))$ means $p_y^k \notin cl_{[\gamma,\gamma']}(p_x^\lambda)$, thus $cl_{[\gamma,\gamma']}(p_x^\lambda) \subseteq p_x^\lambda$. (sufficiency): Let $p_x^\lambda, p_y^k \in S(X)$ and $p_x^\lambda \neq p_y^k$. Since p_x^λ and p_y^k are both $[\gamma, \gamma']$ -closed set, $cl_{[\gamma,\gamma']}(p_x^\lambda) = p_x^\lambda$ and $cl_{[\gamma,\gamma']}(p_y^\gamma) = p_y^\gamma$. Since $p_x^\lambda \neq p_y^k$, then $p_y^k \notin cl_{[\gamma,\gamma']}(p_x^\lambda)$ and $p_x^\lambda \notin cl_{[\gamma,\gamma']}(p_x^\lambda)$. Therefore, there exists open Q-neighbourhoods U,V of p_x^λ and W, S Open Q-nbds of p_y^k such that $(\gamma(U) \cap \gamma'(V))\overline{q}p_y^k$ and $(\gamma(W) \cap \gamma'(S))\overline{q}p_x^\lambda$. Thus for each $(p_x^\lambda, p_y^k) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U, V of p_x^λ and W,S of p_y^k such that $(\gamma(U) \cap \gamma'(V))\overline{q}p_y^k$ and $(\gamma(W) \cap \gamma'(S))\overline{q}p_x^\lambda$. This implies (X,T) is a fuzzy $[\gamma, \gamma'] - T_1$ space.

Theorem 6.7.4: If (X,T) is fuzzy $[\gamma, \gamma'] - T_2$, then it is fuzzy $[\gamma, \gamma'] - T_1$.

Proof: Let (X,T) be a fuzzy $[\gamma, \gamma'] - T_2$ space. Then for each $(p_x^{\lambda}, p_y^k) \in X \times X - \Delta(X)$, there exists open Q-neighbourhoods U , V of p_x^{λ} and W,S of p_y^k such that $(\gamma(U) \cap \gamma'(V))\overline{q}(\gamma(W) \cap \gamma'(S))$.

Since $p_x^{\lambda} \neq p_y^{k}$, $p_x^{\lambda}q(\gamma(U) \cap \gamma'(V))$ and $p_y^{k}q(\gamma(W) \cap \gamma'(S))$, then $(\gamma(U) \cap \gamma'(V))\overline{q}p_y^{k}$ and $(\gamma(W) \cap \gamma'(S))\overline{q}p_x^{\lambda}$. Hence (X,T) is fuzzy $[\gamma, \gamma'] - T_1$

Definition 6.7.5: Let (X,T) be a fts and γ an operation on T. A fuzzy set $A \in I^X$ is called $[\gamma, \gamma']$ -generalized closed $([\gamma, \gamma']$ -g.closed, for short) if $cl_{[\gamma, \gamma']}(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy $[\gamma, \gamma']$ -open in (X,T).

Theorem 6.7.6: Every fuzzy $[\gamma, \gamma']$ -closed set is fuzzy $[\gamma, \gamma']$ -g-closed.

Proof: It is obvious.

Definition 6.7.7: A space (X,T) is called a fuzzy $[\gamma, \gamma'] - T_{\gamma_2}$ space if every fuzzy

 $[\gamma, \gamma']$ -g.closed set of (X,T) is fuzzy $[\gamma, \gamma']$ -closed

Theorem 6.7.8: For each $p_x^{\lambda} \in S(X)$, p_x^{λ} is $[\gamma, \gamma']$ -closed or $(p_x^{\lambda})^{C}$ is fuzzy

 $[\gamma, \gamma']$ -g.closed set in (X, T).

Proof: Suppose p_x^{λ} is not $[\gamma, \gamma']$ -closed. Then $(p_x^{\lambda})^C$ is fuzzy $[\gamma, \gamma']$ -open. Let U be any fuzzy $[\gamma, \gamma']$ -open set such that $(p_x^{\lambda})^C \subseteq U$. Since U = X is the only fuzzy $[\gamma, \gamma']$ -open, $cl_{[\gamma,\gamma']}((p_x^{\lambda})^C) \subseteq U$. Therefore $(p_x^{\lambda})^C$ is fuzzy $[\gamma, \gamma']$ -g-closed set.

6.8. Fuzzy ([γ, γ'], [β, β'])-continuous mapping:

Throughout this section, let $f:(X,T)\rightarrow(Y,T')$ be fuzzy mapping and

let $\gamma, \gamma': T \to I^X$ be fuzzy operation on T and $\beta, \beta': T' \to I^Y$ be fuzzy operation on T'.

Definition 6.8.1: A mapping $f:(X,T) \rightarrow (Y,T')$ is said to be fuzzy

 $([\gamma, \gamma'], [\beta, \beta'])$ -continuous if and only for every fuzzy point p_x^{λ} in X and every fuzzy open Q-neighborhood W and S of $f(p_x^{\lambda})$, there exists a fuzzy open Q-neighborhood U and V of p_x^{λ} such that $f(\gamma(U) \cap \gamma'(V) \subseteq \beta(W) \cap \beta'(S)$

Theorem 6.8.2: Let (i), (ii), (iii) and (iv) be the following properties for a fuzzy mapping $f:(X,T) \rightarrow (Y,T')$.

(i) $f:(X,T) \to (Y,T')$ is fuzzy $([\gamma,\gamma'], [\beta,\beta'])$ -continuous mapping.

(ii) $f(\operatorname{Cl}_{[\gamma,\gamma']}(A)) \subseteq \operatorname{Cl}_{[\beta,\beta']}(f(A))$ for every fuzzy subset A of (X,τ) .

(iii) For any fuzzy $[\beta, \beta']$ -closed set B of (Y, T'), $f^{-1}(B)$ is fuzzy $[\gamma, \gamma']$ -closed set in (X,T).

(iv) For any $B \in T'_{[\beta,\beta']}, f^{-1}(B) \in T_{[\gamma,\gamma']}$ holds.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)

Proof: (i) \Rightarrow (ii). Let $p_x^{\lambda} \in cl_{[\gamma,\gamma']}(A)$ and let W and S be open Q-neighbourhood of $f(p_x^{\lambda})$

. Then there exists open Q-neighborhoods U and V of p_x^{λ} such that

$$\begin{split} f(\gamma(\mathbf{U}) \cap \gamma'(\mathbf{V}) &\subseteq \beta(\mathbf{W}) \cap \beta'(\mathbf{S}) \text{ .Again } p_x^{\lambda} \in \mathrm{Cl}_{[\gamma,\gamma']}(\mathbf{A}), \Rightarrow (\gamma(\mathbf{U}) \cap \gamma'(\mathbf{V})) \neq \mathbf{A} \Rightarrow \\ f(\gamma(\mathbf{U}) \cap \gamma'(\mathbf{V})) \neq f(\mathbf{A}) \Rightarrow (\beta(\mathbf{W}) \cap \beta'(\mathbf{S})) \neq f(\mathbf{A}) \Rightarrow f(p_x^{\lambda}) \in \mathrm{Cl}_{[\beta,\beta']}(f(\mathbf{A})) \Rightarrow \\ p_x^{\lambda} \in f^{-1}(cl_{[\beta,\beta']}(f(A))). \quad \text{Thus} \quad cl_{[\gamma,\gamma']}(A) \subseteq f^{-1}(cl_{[\beta,\beta']}(f(A))) \text{ so that} \\ f(cl_{[\gamma,\gamma']}(A)) \subseteq cl_{[\beta,\beta']}(f(A)) \end{split}$$

(ii) \Rightarrow (iii). Let B be a fuzzy [β, β']-closed set of (Y,T'). Then

 $\operatorname{Cl}_{[\beta,\beta']}(B) = B$. By using (i) we have

$$f(\operatorname{Cl}_{[\gamma,\gamma']}(f^{-1}(B))) \subseteq \operatorname{Cl}_{[\beta,\beta']}(ff^{-1}(B)) \subseteq \operatorname{Cl}_{[\beta,\beta']}(B) = B. \text{ Thus } \operatorname{Cl}_{[\gamma,\gamma']}(f^{-1}(B)) \subseteq f^{-1}(B).$$

Again by proposition 6.6.6(i) we have $f^{-1}(B) \subseteq \operatorname{Cl}_{[\gamma,\gamma']}(f^{-1}(B)).$ Hence

 $\operatorname{Cl}_{[\gamma,\gamma']}(f^{-1}(B)) = f^{-1}(B)$. That is $f^{-1}(B)$ is fuzzy $[\gamma, \gamma']$ -closed set in (X,T).

(iii) \Rightarrow (iv). Let B be fuzzy β -open set in Y. Then B^c is fuzzy [β , β']-closed set in Y. Then by (ii) $f^{-1}(B^c) = (f^{-1}(B))^c$ is fuzzy [γ, γ']-closed set in X and hence $f^{-1}(B)$ is fuzzy [γ, γ']-open set in X.

Theorem 6.8.3. Let $f:(X,T) \rightarrow (Y,T')$ be fuzzy mapping and (Y,T') fuzzy -regular space, then following statements are equivalent.

(i) $f:(X,T)\to(Y,T')$ is fuzzy $([\gamma,\gamma'],[\beta,\beta'])$ -continuous mapping.

(ii) $f(\operatorname{Cl}_{[\gamma,\gamma']}(A)) \subseteq \operatorname{Cl}_{[\beta,\beta']}(f(A))$ holds for every fuzzy subset A of (X,T).

(iii) For any fuzzy $[\beta, \beta']$ -closed set of (Y, T'), $f^{-1}(B)$ is fuzzy $[\gamma, \gamma']$ - closed in X.

Proof: By theorem 6.8.2, we have (i) \Rightarrow (ii) \Rightarrow (iii), so it is sufficient to prove (iii) \Rightarrow (i). Let p_x^{λ} be a fuzzy point in X and W and S be a fuzzy open q-neighborhood of $f(p_x^{\lambda})$

Since $W \cap S$ is also a open Q-neighborhood of $f(p_x^{\lambda})$, then by theorem 6.5.8, $W \cap S$ is fuzzy $[\beta, \beta']$ -open set in Y and hence $(W \cap S)^C$ is fuzzy $[\beta, \beta']$ -closed set in Y. Then by our assumption, $f^{-1}((W \cap S)^C) = (f^{-1}(W \cap S))^C$ is fuzzy $[\gamma, \gamma']$ -closed set in X. Therefore $f^{-1}(W \cap S)$ is fuzzy $[\gamma, \gamma']$ -open set in X. Also we have $f(p_x^{\lambda}) \neq (W \cap S)$. This implies $p_x^{\lambda} \neq f^{-1}(W \cap S)$. Since $f^{-1}(W \cap S)$ is fuzzy $[\gamma, \gamma']$ -open set, there exists open Q-neighborhoods U and V of p_x^{λ} such that $\gamma(U) \cap \gamma'(V) \subseteq f^{-1}(W \cap S)$ and hence

 $f(\gamma(\mathbf{U}) \cap \gamma'(\mathbf{V})) \subseteq \mathbf{W} \cap \mathbf{S} \subseteq \beta(\mathbf{W}) \cap \beta'(\mathbf{S})$ so that f is fuzzy

([γ, γ'],[β, β'])-continuous.

Theorem 6.8.4: Let $f:(X,T) \rightarrow (Y,T')$ be fuzzy mapping and β and β' be fuzzy open operation, then following statements are equivalent.

(i) $f:(X,T)\to(Y,T')$ is fuzzy ($[\gamma,\gamma'],[\beta,\beta']$) continuous.

(ii) $f(\operatorname{Cl}_{[\gamma,\gamma']}(A)) \subseteq \operatorname{Cl}_{[\beta,\beta']}(f(A))$ holds for every fuzzy subset A of (X,T).

(iii) For any fuzzy $[\beta, \beta']$ -closed set of (Y,T), $f^{-1}(B)$ is fuzzy $[\gamma, \gamma']$ - closed in X.

Proof: By theorem 6.8.2 we have (i) \Rightarrow (ii) \Rightarrow (iii), so it is sufficient to prove that (iii) \Rightarrow (i). Let p_x^{λ} be a fuzzy point in X and V be a fuzzy open q-neighborhood of $f(p_x^{\lambda})$. Since β and β' are fuzzy open operations, there exists a fuzzy β -open set A and a fuzzy β' -open set B and $f(p_x^{\lambda})$ q A and $f(p_x^{\lambda})$ q B such that $A \subseteq \beta(W)$ and $B \subseteq \beta'(S)$. Hence $f(p_x^{\lambda})$ q (A \cap B) and A \cap B $\subseteq \beta(W) \cap \beta'(S)$. Again since A \cap B is fuzzy $[\beta, \beta']$ -open set in Y , (A \cap B)^c is fuzzy $[\beta, \beta']$ -closed set in Y. Then by our assumption, $f^{-1}((A \cap B)^c) = (f^{-1}(A \cap B))^c$ is fuzzy $[\gamma, \gamma']$ -closed set in X. Consequently $f^{-1}(A \cap B)$ is fuzzy $[\gamma, \gamma']$ -open set in X and p_x^{λ} q $f^{-1}(A \cap B)$. Then there exist open Qneighborhoods U and V of p_x^{λ} such that $\gamma(U) \cap \gamma'(V) \subseteq f^{-1}(A \cap B)$ and hence $f(\gamma(U) \cap \gamma'(V)) \subseteq A \cap B \subseteq \beta(W) \cap \beta'(S)$ This shows that f is fuzzy $([\gamma, \gamma'], [\beta, \beta'])$ -continuous mapping.