CHAPTER 8

PREDICTION OF pK, FROM BASICITY OF ATOMIC SITES OF DRUGS

SUMMARY

The pK_a values of various acridine carboxamides have been evaluated to understand the acid-base behaviors of these drugs. The pK_a values are determined from the gas phase proton affinities with consideration from zero point energies and solvation energies. The local basic sites were taken for calculating pK_a . The pK_a values of these drugs are very close and approximately range from 8-9. There are some differences between the pK_a values of nitrogen atoms present in chromophore and carboxamide side chain.

8.1 INTRODUCTION

The hydrogen bonds and the role of proton in biological system are believed to be the physical ground of numerous enzymatic reactions as well as transport phenomena through membranes [1-4]. Obviously, knowledge of such physical property is indirectly used in drug designing, because the exact description of physio-chemical behavior of drugs is likely to influence the efficiency of cell penetration occurred within biological system.

A large number of acridine-4-carboxamides with increased DNA binding ability have been reported and subsequently the relationship between the binding ability and anticancer properties are examined so that the information may be used for designing new drugs with more biological property. However, all these drugs have varying range of pK_a values [5-11]. The chromophore itself forms charged dication and also acquires low lipophilicity. Drugs having low pK_a values act as uncharged chromophore. The formation of dication in these drugs occurs only at low pH, (in strong acidic solution). Moreover uncharged species are more lipophilic, and the anticancer property has been observed to be dependent on the lipophilic behavior and on pK_a values [9-11]. There are evidences that in some cases alteration of the cationic side chain of the drugs lead to reduced activity [7-9]. Although many studies indicate the relation between the strength of drug-DNA binding and their biological properties [11-15], some DNA binding drugs do not acquire sufficient biological properties. However one of the distinguishable observations found in these drugs is the

variation of pK, values. In such situation monitoring physio-chemical properties rather than monitoring the DNA binding ability of drugs may be necessary. As such the DNA binding ability of a drug may be dominated by the chromophores intercalation, where the charge acceptor capacity of chromophores play major role. The charge acceptor capacity is related to the type of substituents and the position and nature of side chain in chromophore. Various studies on the DNA binding model of acridine-4-carboxamide shows that strong binding of drug within DNA alone do not ensure in vivo anticancer properties [11-13]. In other words, for this class of drugs, the DNA binding ability is not the unique property. Among the acridine-4-carboxamides, the drug with carboxamides side chain at C4 in chromophore shows efficient in vivo potency, whereas the carboxamides with side chain at C1, C2 and C3 positions acquire significantly low potency [7-10]. The existence of unusually stable DNA-drug complex is found due to the presence of intramolecular hydrogen bond between the chromophore nitrogen and carboxamide side chain that is observed only in the carboxamide having side chain at C4 position. If the charge accepting ability of chromophore is very important, then the pH and the pK of drugs appear to be critical for these acridine-4-carboxamides.

Such behavior is likely to be more prominent in the azaacridine-4-carboxamides because of the presence of additional basic sites in the ring. The fact that the presence of more basic sites generally makes the drug to be strongly influenced by the lons and protons present in the environment. Here, we aim to determine the basicities of these molecules, and thereby to predict the pK_a values of these drugs. The prediction of absolute pK_a is a topic of recent interest *[16]*. Like other methods used in determining pK_a, such as thermodynamics parameters, we attempt to use *ab initio* method in computing absolute pK_a values of drugs, so that the relative change in pK_a values with respect to DNA binding ability of drugs can be analysed. Understanding the pK_a of a compound, that can be characterized as a Bronsted acid, is very important for gaining more details of reaction in solution. Moreover many proton transfer reactions occur in biological systems generally depend on the intracellular and extra cellular pK_a values. Indeed determination of absolute pK_a value for the dissociation of ion is necessary in many reactions. Thus most of the related phenomena involved in the reaction system can be obtained from the acid-base equilibrium structures.

8.2 THEORY

The acidity or basicity of a molecule is defined by Bronsted theory based on the ability of generating H^+ . Similarly, Lewis's concept of explaining acidity or basicity depends on the ionization ability of atoms or molecules. In such cases, K_{e} is the equilibrium constant for the following reaction,

$$(AZ)H(aq) + H_2O \longrightarrow H_3O^+ + AZ^-(aq) \qquad(1)$$

Then the deprotonation of H^{+} from the active site of the base may be used for determining pK_a . The experimental pK_a values are not the absolute value, and for complex system it is difficult to determine exact value. Sometimes the pK_a of a molecule depends on specific site of ion dissociation and such basic sites may be multiple in some molecules. Here the calculation of pK_a values consist of two steps,

(1) A thorough analysis of all the active sites of protonation by H⁺ in gas phase protonation is to be performed, and the specific site or ionizable center in the molecule to be found. Knowledge of specific site is important than determining the global ionization potential of the molecule. The most basic site of molecule may be determined from the computed proton affinities (PA) for different sites. The additional contributions from the solvent environment as well as zero point vibrational energies are considered.

$$E_m = E + ZPE + S,$$

where E_m , ZPE, S are the energies of the reaction-1 (above), zero point energies and solvation energies of drug at the point of dissociation of the proton.

(2) In the second step we employ the mechanism of deprotonation from the most active site (most basic site), that is the site with highest PA value. The magnitude of minimum dissociation energy of H+ from this site was determined. The energy of deprotonation from this site and corresponding zero point energy and solvation energies (absolute value) were computed.

$$E_{min} = (E(AZ)H^+ - EAZ) + ZPE_{min} + S_{man}$$

$$pK_{a} = -Log K_{a} = E_{min} / 2.303 . RT$$

The pK_a values are correlated with the ability of dissociating of H⁺, herein easily ionizable acid acquires low pK_a.

For computing solvation energies, Self Consistent Reaction Field method has been used. Complete geometry optimizations were carried out for both the acid and its conjugate base [17].

8.3 RESULTS AND DISCUSSION

8.3.1 SITES OF PROTONATION

There are four major sites for protonation in 9-oxoazaacridone-4-carboxamide (AZO) and 9-chloroazaacridine-4-carboxamide (AZCI). They are N10, N16, N19 and Nx (x = 5, 6, 7 and 8 depending on the position of Nx) (Figure 8.1a-d and 8.2a-d). Of these N10 and Nx are the basic sites in the chromophore, and N16 and N19 are additional basic sites located in the side chain. Similarly, the protonation sites in 9-aminoazaacridine-4-carboxamide (AZN) are N10, N17, N20,-NH, and Nx (Figure 8.3a-d). Of these N10 and Nx are the basic sites in the chromophore, and N17 and N20 lie in the side chain. The ionization of proton from these sites is used to determine the overall pK, values of these molecules. The proton affinities of these sites are calculated, and the site having maximum PA is found for all the drugs (Table 8.1, 8.2 and 8.3). In the AZOs and AZCIs, the N19 at the side chain is the most basic site. However the differences in the PA values of the atomic sites located in chromophore and side chains are very significant (Table 8.1, 8.2 and 8.3). In this case pK, value of this drug is measured by the ionizability of proton from the sites located in chromophore and side chain. Again in case of all five atomic sites of 9-aminoazaacridine-4-carboxamides (AZN), N20 acquires highest basicity than the other sites. As we have seen in AZN, the N20 nitrogen in the side chain is highly basic but the PA value is not much different from that of N10 site of chromophore where as for the acridine analogues 9chloroazaacridine-4-carboxamides (AZCI), the basicities of N19 is much more than chromophore nitrogen (Table 8.2 and 8.3). If we consider only the chromophore of these drugs, the differences in the basicities of N10 and Nx in the ring are distinct, and the Nx is found to be less basic than N10 in AZN and AZCI except in AZO where N10 is more basic. Earlier investigation shows that the electron withdrawing and the electron donating groups

1.

like -Cl, -NH₂ and -OCH₃ influences the basicities of chromophore nitrogen of acridine-4carboxamides. Similarly in substituted azaacridine-4-carboxamide there observed change in proton effinities of basic sites in chromophore. On this ground it is expected that by changing substituents in chromophore of this drug it is possible to adjust pK_a values of these classes of carboxamides.

8.3.2 GEOMETRIES OF PROTONATED DRUGS

While computing the basicities of these molecules, there observed contrasting geometries of the protonated molecules compared to unprotonated species (Figure 8.4a-I). It is found that in the protonated structure the formation of intramolecular hydrogen bond between H30 and N10, and another hydrogen bond between O28 (in carboxamide) and proton is indicated (Figure 8.4a-d). Unlike acridine-4-carboxamide, in the unprotonated azaacridine the oxygen atom of the carboxamide side chain is strictly planar. However the geometry of protonated azaacridine-4-carboxamide is different from free molecule. Structural changes are shown in Figure 8.4a-d, and the H-bond lengths are shown in Table 8.4. Similar observation is also noticed in the protonated AZOs (at position N19), where H-bond formation is in between H25 to O29 and O29 to proton (Figure 8.4e-h and Table 8.5). Similarly the intramolecular H-bond persists in 9-aminoazaacridine-4-carboxamide (Figure 8.4i-I and Table 8.6). As evident from the above results, the substituent at position 9 as well as the position of Nx affects the intramolecular hydrogen bond formation in these molecules. It is worth explaining the ionization of H+ from the ring protonated nitrogen. In this case the proton is well embedded between the ring N and O of carboxamide side chain at equilibrium position. In this case, the dissociation of proton will not be easy under high pH, while the dissociation of other protons attached to side chain, and at N6 or N7 or N8 of ring may easily occur at high pH. Hence it is necessary to examine the reasonable pK_{a} values for these sites. We have computed the pK_{a} values from the dissociation energies of H+ of the protonated species of these drugs.

8.3.3 ESTIMATION OF pK.

The effective sites for proton binding are considered for computing the pK_a where the ionization of H+ from these sites may give some idea of drug's pK_a value. The pK_a of these sites are given in **Tables 8.1**, **8.2** and **8.3**. The pK_a of N19 in 9-oxoaza(7)acridone-4-carboxamide (AZO7) is found to be higher than the pK_a values of other sites. This may be

because of the electron withdrawing nature of -CO group attached at position 9 in the ring. But the proton is well embedded in between oxygen and nitrogen, hence the dissociation of proton from this region may result marked increase in the pK_a value, and the intramolecular H-bond may be considered as another factor for the changes in pK_a values of different drugs.

Similarly, in order to estimate absolute pK_a, values of 9-aminoazaacridine-4carboxamides (AZNs), the various sites for protonation are found, the PA values are given in Table 8.3. Here N20 nitrogen is found to be most basic site in this molecule. The variation of proton affinities of ring nitrogen Nx and N10 is not much. Here, the difference between the proton affinities of 9-aminoazaacridine-4-carboxamide and 9chloroazaacridine-4-carboxamide is guite significant. Hence the electronic properties of substituents at position 9 may alter pK, values of these drugs. Here, there observed differences in the pK of 9-aminoazaacridine-4-carboxamide and 9-chloroazaacridine-4carboxamides (Table 8.2 and 8.3). Not only the variations in the geometries of these drugs compared to unprotonated counter parts, the pK, values of these drugs differ (Figures 8.1a-d, 8.2a-d, 8.3a-d and 8.4a-I). In that case the ability of these drugs for penetrating inside the cell membrane, which normally depend on the pK, values, can be assessed for use in physiological environment. Herein, either the protonated form or the unprotonated form might target DNA for intercalating between sequences. The intercalating ability of the protonated and unprotonated form of drug may determine the efficiency of DNA Interaction. As per our findings, both protonated form and unprotonated forms might intercalate easily due to the planarity of chromophore whereas the conformation of the side chain in unprotonated form differ from protonated form. Thereafter, the information on the geometries, pK, values and intercalating abilities might be useful for analyzing the optimal condition essential for designing a class of this anticancer drug.

8.3.4 COMPLEMENTARITY OF pK, VALUES OF DRUGS WITH PHYSIOLOGICAL ENVIRONMENT

Besides the DNA binding ability of drugs, it is necessary to know the transportability of drug towards the binding site (DNA) sequences, herein multiple association of drug molecule with protons or H2O molecules present in biological environment may occur. The pK_a values of these drugs should be approximately 7.4, so that undissociated drug

could be transferred towards the receptor site. However in most cases such basic sites are also target for other H bonding systems in the environment, and if the pK_a of drug is very less, then these sites may interact with other bio-molecules rather than interacting with DNA. The oxidation-reduction reactions and formation of hydrogen bonds normally occur in biological environment. Hence, the primary importance should be given for adjusting the pK_a values of drugs in addition to enhancing DNA binding ability. In this case the pK_a values of most azaacridine-4-carboxamide significantly differ from physiological pH. Comparison of pK_a values of these drugs are shown in Table 8.1, 8.2 and 8.3, where the pK_a values of 9-oxoaza(7)acridine-4-carboxamide is found to be more than those of other drugs

8.4 CONCLUSION

The pK_a values of specific atomic sites are clearly indicated, and the predicted pK_a is higher than physiological pH. Thus the computed pK_a values of these drugs may reflect some idea of physio chemical behavior of this class of drug.

Figure 8.1a - Unprotonated AZCL5

Figure 8.1c – Unprotonated AZCL7 Figure 8.1d – Unprotonated AZCL8 Figure 8.1a-d- Structure of Unprotonated AZCI and location of probable protonation site.

Figure 8.2a - Unprotonated AZO5

Figure 8.2b - Unprotonated AZO6

Figure 8.1b - Unprotonated AZCL6

Figure 8.2c – Unprotonated AZO7 Figure 8.2d – Unprotonated AZO8 Figure 8.2a-d- Structure of Unprotonated AZO and location of probable protonation site.

Figure 8.3a - Unprotonated AZN5

Figure 8.3b - Unprotonated AZN6

103

Figure 8.4a - Optimised AZCL5-19+

Figure 8.4c - Optimised AZCL7-19+

Figure 8.4e - Optimised AZO5-19+

Figure 8.4b - Optimised AZCL6-19+

Figure 8.4f - Optimised AZO6-19+

Figure 8.4g - Optimised AZO7-19+

Figure 8.4i - Optimised AZN5-20+

Figure 8.4h - Optimised AZO8-19+

Figure 8.4j - Optimised AZN6-20+

Figure 8.4k – Optimised AZN7-20+ Figure 8.4l– Optimised AZN8-20+ Figure 8.4a-I- Structure of protonated AZO, AZN and AZCI (protonated at the most basic site.)

Table 8.1- Computed proton affinities (PA) and corresponding pKa's for the						
most basic sites of 9-oxoazaacridone-4-carboxamide (AZO).						
Drug molecules	Protonation Site	P. A. (in a. u.)	pКa			
	N5	0.388615				
4705	N10	0.354312	8.02			
, ALOU	N16	0.331249	0.83			
	N19	0.410069				
	N6	0.388942				
AZO6	N10	0.349885	0.06			
~2.00 ·	N16	0.330303	9.00			
	N19	0.408756				
	N7	0.406784				
A707	N10	0.348216	0.17			
ALUI	N16	0.328707	5.17			
	N19	0.406984				
	N8	0.400033				
A709	N10	0.346707	8 08			
ALU0	N16	0.327286	0.30			
	N19	0.403607				

r,

ı,

Table 8.2- Computed proton affinities (PA) and corresponding pKa's for the					
most basic site of 9-chloroazaacridine-4-carboxamide (AZCI).					
Drug molecules	Protonation Site	P. A. (in a. u.)	pKa		
	N5	0.381851			
17015	N10	0.386261	9.91		
AZOLO	N16	0.382215	0.01		
	N19	0.427487			
	N6	0.374016			
AZCL6	N10	0.377968	0 00		
	N16	0.364756	0.00		
	N19	0.420805			
	N7	0.373220			
47017	N10	0.379952	0 00		
ALUL/	N16	0.370587	0.00		
	N19	0.420927			
	N8	0.372428			
1701 0	Computed proton affinities (PA) and corresponding t basic site of 9-chloroazaacridine-4-carboxamide iles Protonation Site P. A. (in a. u.) N5 0.381851 N10 0.386261 N16 0.382215 N19 0.427487 N6 0.374016 N10 0.377968 N16 0.364756 N19 0.420805 N7 0.370587 N16 0.370587 N19 0.420927 N8 0.372428 N10 0.382768 N16 0.371969 N19 0.422124	9.01			
AZULO	N16	0.371969	0.91		
	N19	0.422124			

٩

,

Table 8.3- Computed proton affinities (PA) and corresponding pKa's for most						
basic si	basic site of 9-aminoazaacridine-4-carboxamide (AZN).					
Drug molecules	Protonation Site	P. A. (in a. u.)	рК _а			
	N5	0.397110				
	N10	0.426332				
AZN5	N11	0.323765	9.05			
	N17	0.378665				
	N20	0.435279				
······	N6	0.379941				
	N10	0.413934				
AZN6	N11	0.317757	8.99			
	N17	0.367322				
	N20	0.428501				
· · · ·	N7	0.383156	*****************			
	N10	0.417789				
AZN7	N11	0.312199	8.99			
	N17	0.368528				
	N20	0.428704				
	N8	0.363810				
	N10	0.422157				
AZN8	N11	0.336589	9.05			
	N17	0.371655				
	N20	0.430547				

observed in some protonated form, along with out of plane angle of O atom in protonated AZCI H-bond length Out of plane angle of O					
Didy molecules	H30-N10	O28-proton	atom		
AZCI5	1.845 Å	1.614 Å	1.0°		
AZCI6	-	1.702 Å	22.7 *		
AZCI7	1.899 Å	1.636 Å	-0.8°		
AZC18	1.903 Å	1.629 Å	-1.8°		

Table 8.5- The distance observed in some protonal	of proton from the m ed form, along with	ost basic site and i out of plane angle o	ntra molecular H-bond that of O atom in protonated AZO		
H-bond length Out of plane angle of					
Ding molecules	H25-O29	O29-proton	atom		
AZO5	1.791 Å	1.128 Å	-0.1*		
AZO6	1.886 Å		4.8°		
AZO7	1.805 Å		-30.3*		
AZO8	1.921 Å	1.883 Å	36.2°		

.

Table 8.6- The distance of bserved in some protonation	of proton from the n ad form, along with	nost basic site and i out of plane angle o	ntra molecular H-bond that of O atom in protonated AZN	
H-bond length Out of plane angle of				
Drug molecules	N7-H32	O30-proton	atom	
AZN5			14.5*	
AZN6	1.954 Å	1.794 Å	-4.3*	
AZN7		-	3.8°	
AZN8			61.3°	

.

ı.

1

,

•

Table 8.7- The computed Zero point energies and Solvation energies of Free and						
Protonat	Protonated 9-chloroazaacridine-4-carboxamides (AZCI) for the most basic sites.					
	Most Basic Solvation energies (a. u.) Zero Point energies (a. u.)					
Molecules	Protonation	Eroo drug	Protonated	Emo dava	Protonated	
	site	1 loc ulug	drug	I Ico uluy	drug	
AZCI5	N19	0.005710	0.021202	0.345806	0.362641	
AZCI6	N19	0.001689	0.030639	0.345729	0.362549	
AZCI7	N19	0.000451	0.029737	0.345718	0.362482	
AZCI8	N19	0.002373	0.036182	0.345708	0.362490	

Table 8.8- The compu	ted Zero point energies and So	Ivation energies of Free and
Protonated 9-oxoaza	acridone-4-carboxamides (AZO) for the most basic sites.
Most Basic	Solvation energies (a. u.)	Zero Point energies (a. u.)

Molecules	Protonation site	Free drug	Protonated Drug	Free drug	Protonated Drug
AZO5	N19	0.002105	0.033699	0.362007	0.378965
AZO6	N19	0.006345	0.054531	0.362444	0.378638
AZO7	N19	0.007382	0.070694	0.362714	0.378812
AZO8	N19	0.007561	0.052788	0.361684	0.378518

Table 8.9 - The computed Zero point energies and Solvation energies of Free and						
Protonat	ed 9-aminoaza	aacridone-4-c	arboxamides (/	AZN) for the mo	st basic sites.	
	Most Basic Solvation energies (a. u.) Zero Point energies (a. u.)					
Molecules	Protonation site	Free drug	Protonated drug	Free drug	Protonated drug	
AZN5	N20	0.015840	0.006938	0.374258	0.391202	
AZN6	N20	0.006765	0.014730	0.374325	0.391226	
AZN7	N20	0.006472	0.014052	0.374529	0.391382	
AZN8	N20	0.006011	0.019406	0.374966	0.391799	

.

Reference

- 1. Charles A S, Hai- Chou Chang, Walter S S, Atwell G J, Denny W A, J Phys Chem, 99, 1995, 8927.
- 2. Denny W A, Atwell G J, Baguley B C, Wakelin L P G, J Med Chem, 30, 1987,855.
- 3. Denny WA, Cain BF, Atwell GJ, Hanch C, PanthananicKal A, Leo, AJ Med Chem, 25, 1982, 276.
- 4. Feigon J, Denny W A, Leupin W, Kearns D R, J Med Chem, 27, 1984, 450
- 5. Finley G J, Baguley B C, Atwell G J, Eur J Cancer Clin Oncol, 20, 1984, 947
- 6. Finlay G J, Marshell E S, Mathews J H L, Pauli K D, Baguley B C, Cancer Chemother Pharmacol, 31, 1993, 401.
- 7. Palmer D B, Rewcastle W G, Atweil J G, Beguley B C, Denny W A, J Med Chem, 31, 1988, 707.
- 8. Carlson H A, Briggs J M, McCammon J A, J Med Chem, 42, 1999, 109.
- 9. Muth G W, Ortoleva-Donnelly L, Strobel S A, Science, 289, 2000, 947.
- 10.(a) Jang Y H, Sowers L C, Cagin R, Goddard W A, III, J Phys Chem A, 105, 2001, 274.
 - (b) Bashford D, Karplus M, J Phy Chem, 95, 1991, 9556.
 - (c) Lopez X, Schaefer M, Dejaegere A, Karplus M, J Am Chem Soc, 124, 2002, 5010.
 - (d) Liptak M D, Shields G C, J Am Chem Soc, 123, 2001, 2314
- 11. Toth A M, Liptak M D, Phillips D L, Shields G C, J Chem Phys, 114, 2001, 4595.
- 12. Jang Y H, Sowers L C, Cagin T, Goddard W A, J Phys Chem, 105, 2001, 274.
- 13.(a) Barone V, Cossi M, Tomasi J, J Chem Phys, 107, 1997, 3210.
 - (b) Jorengensen W L, Ravimohan C, J Chem Phys, 83, 1985, 3050.
- 14. Pliego J R jr., Riveros J M, Chem Eur J, 8, 2002, 1945.
- 15. Foresman J B, Keith T A, Wiberg K B, Snoonian J, Friesch M J, J Phys Chem, 100, 1996, 16098.
- 16.(a) Schuurmann G, Cossi M, Barone V, Tomasi J, J Phys Chem, 102, 1998, 6706.
 - (b) Cammi R, Tomasi J, J Comput Chem, 16, 1995, 1449.
 - (c) Li H, Hains W A, events E J, Robertson D A, Jensen H J, J Phys Chem B, 106, 2002, 3486
 - (d) Sullivan J J, Jones A D, Tanji K K, J Chem Inf Computu Sci, 40, 2000, 1113.
 - (e) Parajuli R, Medhi C, J Chem Sciences, 116, 4, 2004, 235.
- Frisch M J, Trucks G W, Schlegel H B, Gill P M W, Johnson B G, Robb M, Cheeseman J R, Keith T, Petersson G A, Montgomery J A, Raghavachari K, Al-Laham M A, Zakrzewaki V G, Ortiz J V, Foresmann J B, Ciolowski J, Stefanov B B, Namayakkara A, Challacombe M, Peng C Y, Ayala P Y, Chen W, Wong M W, Andres J L, Replogle E S, Gomperts R, Martin R L, Fox D J, Binkley J S, Defrees D J, Baker J, Stewart J P, Head-Gordon M, Gonzalez C, Pople J A, 1995. Gaussian 94; Gaussian Inc, Pittburgh, PA, 1995.