CHAPTER 8

PREDICTION OF pK_ FROM BASICITY OF ATOMIC SITES OF DRUGS

SUMAMARY

The PK_{a} values of various acridine carboxamides have been evaluated to understand the acid-base behaviors of these drugs. The pK_{a} values are determined from the gas phase proton affinities with consideration from zero point energies and solvation energies. The locał basic sites were taken for calculating pK_{a}. The pK_{a} values of these drugs are very close and approximately range from 8-9. There are some differences between the pK_{e} values of nitrogen atoms present in chromophore and carboxamide side chain.

8.1 INTRODUCTION

The hydrogen bonds and the role of proton in biological system are believed to be the physical ground of numerous enzymatic reactions as well as transport phenomena through membranes [1-4]. Obviously, knowledge of such physical property is indirectly used in drug designing, because the exact description of physio-chemical behavior of drugs is likely to influence the efficiency of cell penetration occurred within biological system.

A large number of acridine-4-carboxamides with increased DNA binding ability have been reported and subsequently the relationship between the binding ability and anticancer properties are examined so that the information may be used for designing new drugs with more biological property. However, all these drugs have varying range of pK_{a} values [5-11]. The chromophore itself forms charged dication and also acquires low lipophilicity. Drugs having low PK_{g} values act as uncharged chromophore. The formation of dication in these drugs occurs only at low pH , (in strong acidic solution). Moreover uncharged species are more lipophilic, and the anticancer property has been observed to be dependent on the lipophilic behavior and on pK_{B} values [9-11]. There are evidences that in some cases alteration of the cationic side chain of the drugs lead to reduced activity [7-9]. Although many studies indicate the relation between the strength of drug-DNA binding and their biological properties [11-15], some DNA binding drugs do not acquire sufficient biological properties. However one of the distinguishable observations found in these drugs is the
variation of pK_{g} values. In such situation monitoring physio-chemical properties rather than monitoring the DNA binding ability of drugs may be necessary. As such the DNA binding ability of a drug may be dominated by the chromophores intercalation, where the charge acceptor capacity of chromophores play major role. The charge acceptor capacity is related to the type of substituents and the position and nature of side chain in chromophore. Various studies on the DNA binding model of acridine-4-carboxamide shows that strong binding of drug within DNA alone do not ensure in vivo anticancer properties [11-13]. In other words, for this class of drugs, the DNA binding ability is not the unique property. Among the acridine-4-carboxamides, the drug with carboxamides side chain at C4 in chromophore shows efficient in vivo potency, whereas the carboxamides with side chain at $\mathrm{C} 1, \mathrm{C} 2$ and C 3 positions acquire significantly low potency [7-10]. The existence of unusually stable DNA-drug complex is found due to the presence of intramolecular hydrogen bond between the chromophore nitrogen and carboxamide side chain that is observed only in the carboxamide having side chain at C4 position. If the charge accepting ability of chromophore is very important, then the pH and the pK_{a} of drugs appear to be critical for these acridine-4-carboxamides.

Such behavior is likely to be more prominent in the azaacridine-4-carboxamides because of the presence of additional basic sites in the ring. The fact that the presence of more basic sites generally makes the drug to be strongly influenced by the lons and protons present in the environment. Here, we aim to determine the basicities of these molecules, and thereby to predict the pK_{s} values of these drugs. The prediction of absolute pK_{a} is a topic of recent interest [16]. Like other methods used in determining pK_{a}, such as thermodynamics parameters, we attempt to use $a b$ initio method in computing absolute pK_{a} values of drugs, so that the relative change in pK , values with respect to DNA binding ability of drugs can be analysed. Understanding the PK_{a} of a compound, that can be characterized as a Bronsted acid, is very important for gaining more details of reaction in solution. Moreover many proton transfer reactions occur in biological systems generally depend on the intracellular and extra cellular pK_{a} values. Indeed determination of absolute pK_{a} value for the dissociation of ion is necessary in many reactions. Thus most of the related phenomena involved in the reaction system can be obtained from the acid-base equilibrium structures.

8.2 THEORY

The acidity or basicity of a molecule is defined by Bronsted theory based on the ability of generating H^{+}. Similarly, Lewis's concept of explaining acidity or basicity depends on the ionization ability of atoms or molecules. In such cases, K_{θ} is the equilibrium constant for the following reaction,

$$
\begin{align*}
& (\mathrm{AZ}) \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{AZ}^{-}(\mathrm{aq}) \tag{1}\\
& (\mathrm{AZ}) \mathrm{H} \longrightarrow \mathrm{AZ}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \tag{2}
\end{align*}
$$

Then the deprotonation of H^{+}from the active site of the base may be used for determining pK_{a}. The experimental pK_{a} values are not the absolute value, and for complex system it is difficult to determine exact value. Sometimes the pK_{a} of a molecule depends on specific site of ion dissociation and such basic sites may be multiple in some molecules. Here the calculation of pK_{a} values consist of two steps,
(1) A thorough analysis of all the active sites of protonation by H^{+}in gas phase protonation is to be performed, and the specific site or ionizable center in the molecule to be found. Knowledge of specific site is important than determining the global ionization potential of the molecule. The most basic site of molecule may be determined from the computed proton affinities (PA) for different sites. The additional contributions from the solvent environment as well as zero point vibrational energies are considered.

$$
E_{m}=E+Z P E+S
$$

where $E_{m}, Z P E, S$ are the energies of the reaction-1 (above), zero point energies and solvation energies of drug at the point of dissociation of the proton.
(2) In the second step we employ the mechanism of deprotonation from the most active site (most basic site), that is the site with highest PA value. The magnitude of minimum dissociation energy of $\mathrm{H}+$ from this site was determined. The energy of deprotonation from this site and corresponding zero point energy and solvation energies \{absolute value) were computed.

$$
E_{m n}=\left(E(A Z) H^{+}-E A Z\right)+Z P E_{m n}+S_{m m}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=\mathrm{E}_{\min } / 2.303 . \mathrm{RT}
$$

The pK_{B} values are correlated with the ability of dissociating of H^{+}, herein easily ionizable acid acquires low pK_{a}.

For computing solvation energies, Self Consistent Reaction Field method has been used. Complete geometry optimizations were carried out for both the acid and its conjugate base [17].

8.3 RESULTS AND DISCUSSION

8.3.1 SITES OF PROTONATION

There are four major sites for protonation in 9-oxoazaacridone-4-carboxamide (AZO) and 9 -chloroazaacridine-4-carboxamide (AZCI). They are N10, N16, N 19 and $\mathrm{Nx}(\mathrm{x}=5,6,7$ and 8 depending on the position of Nx) (Flgure 8.1a-d and 8.2a-d). Of these N 10 and Nx are the basic sites in the chromophore, and N16 and N19 are additional basic sites located in the side chain. Similarty, the protonation sites in 9 -aminoazaacridine-4-carboxamide (AZN) are $\mathrm{N} 10, \mathrm{~N} 17, \mathrm{~N} 20,-\mathrm{NH}_{2}$ and Nx (Figure 8.3a-d). Of these N 10 and Nx are the basic sites in the chromophore, and N17 and N20 lie in the side chain. The ionization of proton from these sites is used to determine the overall pK_{a} values of these molecules. The proton affinities of these sites are calculated, and the site having maximum PA is found for all the drugs (Table 8.1, 8.2 and 8.3). In the AZOs and AZCls, the N19 at the side chain is the most basic site. However the differences in the PA values of the atomic sites located in chromophore and side chains are very significant (Table 8.1, 8.2 and 8.3). In this case pK_{a} value of this drug is measured by the ionizability of proton from the sites located in chromophore and side chain. Again in case of all five atomic sites of 9-aminoazaacridine-4-carboxamides (AZN), N20 acquires highest basicity than the other sites. As we have seen in AZN, the N20 nitrogen in the side chain is highly basic but the PA value is not much different from that of N10 site of chromophore where as for the acridine analogues 9 -chloroazaacridine-4-carboxamides (AZCl), the basicities of N 19 is much more than chromophore nitrogen (Table 8.2 and 8.3). If we consider only the chromophore of these drugs, the differences in the basicities of N 10 and Nx in the ring are distinct, and the Nx is found to be less basic than N 10 in AZN and AZCl except in AZO where N 10 is more basic. Earlier investigation shows that the electron withdrawing and the electron donating groups
like $-\mathrm{Cl},-\mathrm{NH}_{2}$ and $-\mathrm{OCH}_{3}$ influences the basicities of chromophore nitrogen of acridine-4carboxamides. Similarly in substituted azaacridine-4-carboxamide there observed change in proton effinities of basic sites in chromophore. On this ground it is expected that by changing substituents in chromophore of this drug it is possible to adjust pK_{a} values of these classes of carboxamides.

8.3.2 GEOMETRIES OF PROTONATED DRUGS

While computing the basicities of these molecules, there observed contrasting geometries of the protonated molecules compared to unprotonated species (Figure 8.4a-1). It is found that in the protonated structure the formation of intramolecular hydrogen bond between H 30 and N10, and another hydrogen bond between O 28 (in carboxamide) and proton is indicated (Figure 8.4a-d). Unlike acridine-4-carboxamide, in the unprotonated azaacridine the oxygen atom of the carboxamide side chain is strictly planar. However the geometry of protonated azaacridine-4-carboxamide is different from free molecule. Structural changes are shown in Figure 8.4a-d, and the H-bond lengths are shown in Table 8.4. Similar observation is also noticed in the protonated AZOs (at position N19), where H-bond formation is in between H 25 to O 29 and O 29 to proton (Figure 8.4e-h and Table 8.5). Similarly the intramolecular H -bond persists in 9-aminoazaacridine-4-carboxamide (Figure 8.4i-l and Table 8.6). As evident from the above results, the substituent at position 9 as well as the position of Nx affects the intramolecular hydrogen bond formation in these molecules. It is worth explaining the ionization of $\mathrm{H}+$ from the ring protonated nitrogen. In this case the proton is well embedded between the ring N and O of carboxamide side chain at equilibrium position. In this case, the dissociation of proton will not be easy under high pH , while the dissociation of other protons attached to side chain, and at N6 or N7 or NB of ring may easily occur at high pH. Hence it is necessary to examine the reasonable pK_{a} values for these sites. We have computed the pK_{a} values from the dissociation energies of $\mathrm{H}+$ of the protonated species of these drugs.

8.3.3 ESTIMATION OF pK

The effective sites for proton binding are considered for computing the pK_{a} where the ionization of $\mathrm{H}+$ from these sites may give some idea of drug's pK_{a} value. The pK_{g} of these sites are given in Tables 8.1, 8.2 and 8.3. The pK_{a} of N 19 in 9-oxoaza(7)acridone-4carboxamide (AZO7) is found to be higher than the pK_{a} values of other sites. This may be
because of the electron withdrawing nature of -CO group attached at position 9 in the ring. But the proton is well embedded in between oxygen and nitrogen, hence the dissociation of proton from this region may result marked increase in the pK_{a} value, and the intramolecular H -bond may be considered as another factor for the changes in pK_{a} values of different drugs.

Similarly, in order to estimate absolute pK_{a}, values of 9 -aminoazaacridine-4carboxamides (AZNs), the various sites for protonation are found, the PA values are given in Table 8.3. Here $N 20$ nitrogen is found to be most basic site in this molecule. The variation of proton affinities of ring nitrogen Nx and N 10 is not much. Here, the difference between the proton affinities of 9-aminoazaacridine-4-carboxamide and 9-chloroazaacridine-4-carboxamide is quite significant. Hence the electronic properties of substituents at position 9 may alter pK_{a} values of these drugs. Here, there observed differences in the pK_{z} of 9-aminoazaacridine-4-carboxamide and 9-chloroazaacridine-4carboxamides (Table 8.2 and 8.3). Not only the variations in the geometries of these drugs compared to unprotonated counter parts, the pK_{a} values of these drugs differ (Figures 8.1a-d, 8.2a-d, 8.3a-d and 8.4a-l). In that case the ability of these drugs for penetrating inside the cell membrane, which normally depend on the pK values, can be assessed for use in physiological environment. Herein, either the protonated form or the unprotonated form might target DNA for intercalating between sequences. The intercalating ability of the protonated and unprotonated form of drug may determine the efficiency of DNA interaction. As per our findings, both protonated form and unprotonated forms might intercalate easily due to the planarity of chromophore whereas the conformation of the side chain in unprotonated form differ from protonated form. Thereafter, the information on the geometries, pK_{a} values and intercalating abilities might be useful for analyzing the optimal condition essential for designing a class of this anticancer drug.

8.3.4 COMPLEMENTARITY OF pK, VALUES OF DRUGS WITH PHYSIOLOGICAL. ENVIRONMENT

Besides the DNA binding ability of drugs, it is necessary to know the transportability of drug towards the binding site (DNA) sequences, herein multiple association of drug molecule with protons or H2O molecules present in biological environment may occur. The pK_{a} values of these drugs should be approximately 7.4 , so that undissociated drug
could be transferred towards the receptor site. However in most cases such basic sites are also target for other H bonding systems in the environment, and if the pK_{a} of drug is very less, then these sites may interact with other bio-molecules rather than interacting with DNA. The oxidation-reduction reactions and formation of hydrogen bonds normally occur in biological environment. Hence, the primary importance should be given for adjusting the pK_{a} values of drugs in addition to enhancing DNA binding ability. In this case the pK_{a} values of most azaacridine-4-carboxamide significantly differ from physiological pH . Comparison of pK_{a} values of these drugs are shown in Table 8.1, 8.2 and 8.3, where the pK_{a} values of 9-oxoaza(7)acridine-4-carboxamide is found to be more than those of other drugs

8.4 CONCLUSION

The pK_{a} values of specific atomic sites are clearty indicated, and the predicted pK_{a} is higher than physiological pH . Thus the computed pK_{a} values of these drugs may reflect some idea of physio chemical behavior of this class of drug.

Figure 8.1a - Unprotonated AZCL5

Figure 8.1c - Unprotonated AZCL7 Figure 8.1a-d-Structure of Unprotonated AZCl and location of probable protonation site.

Figure 8.2a - Unprotonated AZO5

Figure 8.2b - Unprotonated AZO6

Figure 8.2c - Unprotonated AZO7
Figure 8.2a-d- Structure of Unprotonated AZO and location of probable protonation site.

Figure 8.3a - Unprotonated AZN5

Figure 8.3c - Unprotonated AZN7

Figure 8.3b - Unprotonated AZN6

Figure 8.3d - Unprotonated AZN8

Figure 8.3a-d- Structure of Unprotonated AZN and location of probable protonation site.

Figure 8.4a - Optimised AZCL5-19+

Figure 8.4c - Optimised AZCL7-19+

Figure 8.4 e - Optimised AZO5-19+

Figure 8.4b - Optimised AZCL6-19+

Figure 8.4d - Optimised AZCL8-19+

Figure 8.4 - Optimised AZO6-19+

Figure 8.4 g - Optimised AZO7-19+

Figure 8.4i - Optimised AZN5-20+

Figure 8.4k - Optimised AZN7-20+

Figure 8.4h - Optimised AZO8-19+

Figure 8.4j - Optimised AZN6-20+

Figure 8.41- Optimised AZN8-20+

Figure 8.4a-l- Structure of protonated $\mathrm{AZO}, \mathrm{AZN}$ and AZCl (protonated at the most basic site.)

Table 8.1-Computed proton affinities (PA) and corresponding pK_{a} 's for the most basic sites of 9 -0xoazaacridone-4-carboxamide (AZO).

Drug molecules	Protonation Site	P. A. (in a. u.)	PK
AZO5	N5	0.388615	
	N10	0.354312	8.93
	N16	0.331249	
	N19	$\mathbf{0 . 4 1 0 0 6 9}$	
AZO6	N6	0.388942	
	N10	0.349885	9.06
	N16	0.330303	
	N19	$\mathbf{0 . 4 0 8 7 5 6}$	
	N7	0.406784	
AZO7	N10	0.348216	9.17
	N16	0.328707	
	N19	0.406984	
	N8	0.400033	
AZO8	N10	0.346707	8.98
	N16	0.327286	
	N19	0.403607	

Table 8.2- Computed proton affinities (PA) and corresponding pK_{a} 's for the most basic site of 9-chloroazaacridine-4-carboxamide (AZCI).

Drug molecules	Protonation Site	P. A. (in a. u.)	pK_{a}
AZCL5	N5	0.381851	8.81
	N10	0.386261	
	N16	0.382215	
	N19	0.427487	
AZCL6	N6	0.374016	8.86
	N10	0.377968	
	N16	0.364756	
	N19	0.420805	
AZCL. 7	N7	0.373220	8.86
	N10	0.379952	
	N16	0.370587	
	N19	0.420927	
AZCL8	N8	0.372428	8.91
	N10	0.382768	
	N16	0.371969	
	N19	0.422124	

Table 8.3-Computed proton affinifies (PA) and corresponding PK_{a} 's for most basic site of 9 -aminoazaacridine-4-carboxamide (AZN).

Drug molecules	Protonation Site	P. A. (in a. u.)	PK
	N5	0.397110	
AZN5	N10	0.426332	
	N11	0.323765	9.05
	N17	0.378665	
	N20	0.435279	
	N6	0.379941	
AZN6	N10	0.413934	
	N11	0.317757	8.99
	N17	0.367322	
	N20	0.428501	
	N7	0.383156	
	N10	0.417789	
	N11	0.312199	8.99
	N17	0.368528	
	N20	0.428704	
	NB	0.363810	
	N10	0.422157	
	N11	0.336589	9.05
	N17	0.371655	
	N2O	0.430547	

Table 8,4 The distance of proton fiom the most basic site and intra modecuar H bond that observed in some protonated form, along with out of plane angle of O atom in protonated AZCI

Drug molecules	H -bond length		Out of plane angle of 0 atom
	H30-N10	028-proton	
AZC15	1.845 A	1.614 A	1.0°
AZCI6	-	1.702 A	$22.7{ }^{\circ}$
AZCI7	1.899 A	1.636 A	-0.8 ${ }^{\circ}$
AZC18	1.903 A	1.629 A	-1.8 ${ }^{\circ}$

Table 8,5- The distance of proton from the most basic site and intra molecular H bond that observed in some protonated form, along with out of plane angle of O atom in protonated AZO			
Drug molecules	H -bond length		Out of plane angle of 0
Drug molecules	H25-029	O29-proton	atom
AZO5	1.791 A	$1.128 \AA$	-0.1 ${ }^{\circ}$
AZO6	1,886 \AA	-	$4.8{ }^{\circ}$
AZO7	1.805 A	-	-30.3 ${ }^{\circ}$
AZ08	$1.921 \AA$	$1.883 \AA$	36.2°

Table 8.6- The distance of proton from the most basic site and intra molecular H -bond that observed in some protonated form, along with out of plane angle of O atom in protonated $\mathrm{A} Z \mathrm{~N}$

Drug molecules	H-bond length		Out of plane angle of O
	N7-H32	O30-proton	
AZN5	-	-	14.5°
AZN6	$1.954 \AA$	$1.794 \AA$	-4.3°
AZN7	-	-	3.8°
AZN8	-	-	61.3°

Table 8.7- The computed Zero point energies and Solvation energies of Free and Protonated 9 -chloroazaacridine-4-carboxamides (AZCI) for the most basic sites.					
Molecules	Most Basic Protonation site	Solvation energies (a u.)		Zero Point energies (a. u.)	
		Free drug	Protonated drug	Free drug	Protonated drug
AZC15	N19	0,005710	0.021202	0.345806	0.362641
AZC16	N19	0.001689	0.030639	0.345729	0.362549
AZCl7	N19	0.000451	0.029737 .	0.345718	0.362482
AZC18	N19	0.002373	0.036182	0.345708	0.362490

Table 8.8- The computed Zoro point energies and Solvation energies of Free and Protonated 9 -oxoazaacidone-4-carboxamides (AZO) for the most basic sites.

Molecules	Most Basic	Solvation energies (a u.) Protonation site		Free drug	Protonated Drug
		Free drug	Protonated Drug		
	N19	0.002105	0.033699	0.362007	0.378965
AZO6	N19	0.006345	0.054531	0.362444	0.378638
AZO7	N19	0.007382	0.070694	0.362714	0.378812
AZO8	N19	0.007561	0.052788	0.361684	0.378518

Table 8.9 - The computed Zero point energies and Solvation energies of Free and Protonated 9-aminoazaacridone-4-carboxamides (AZN) for the most basic sites.

Molecules	Most Basic Protonation site	Solvation energies (a u)		Zero Point energies (a, u.)	
		Free drug	Protonated drug	Free drug	Protonated drug
AZN5	N20	0.015840	0.006938	0.374258	0.391202
AZN6	N20	0.006765	0.014730	0.374325	0.391226
AZN7	N20	0.006472	. 0.014052	0.374529	0.391382
AZN8	N 2 O	0.006011	0.019406	0.374966	0.391799

Reference

1. Charles A S, Hai- Chou Chang, Walter S S, Atwell G J, Denny WA, J Phys Chem, 99, 1995, 8927.
2. Denny W A, Atwell G J, Baguley B C, Wakelin LP G, J Med Chem, 30, 1987,855.
3. Denny W A, Cain B F, Atwell G J, Hanch C, PanthananicKal A, Leo,A J Med Chem, 25, 1982, 276.
4. Feigon J, Denny W A, Leupin W, Keams D R, J Meed Chem, 27, 1984, 450
5. Finley G J, Baguley B C, Atwell G J, Eur J Cancer Clin Oncol, 20, 1984, 947
6. Finlay G J, Marshell E S, Mathews J HL, Paull K D, Baguley B C, Cancer Chemother Pharmacol, 31, 1993, 401.
7. Palmer D B, Rewcastle W G, Atwell J G, Beguley B C, Denny WA, J Med Chem, 31, 1988, 707.
8. Carison HA, Briggs J M, McCammon JA, J Med Chem, 42, 1999, 109.
9. Muth G W, Ortoleva-Donnelly L, Strobel SA, Science, 289, 2000, 947.
10.(a) Jang Y H, Sowers LC, Cagin R, Goddard W A, III, JPhys Chem A, 105, 2001, 274.
(b) Bashford D, Karplus M, J Phy Chem, 95, 1991, 9556.
(c) Lopez X, Schaefer M, Dejaegere A, Karplus M, J Am Chem Soc, 124, 2002, 5010.
(d) Liptak M D, Shields G C, J Am Chem Soc, 123, 2001, 2314
10. Toth A M, Liptak M D, Phillips D L, Shields G C, J Chem Phys, 114, 2001, 4595.
11. Jang Y H, Sowers LC, Cagin T, Goddand WA, JPhys Chem, 105, 2001, 274.
13.(a) Barone V, Cossi M, Tomasi J, J Chem Phys, 107, 1997, 3210.
(b) Jorengensen W L, Ravimohan C, J Chem Phys, 83, 1985, 3050.
12. Pliego J R ir., Riveros J M, Chem Eur J, 8, 2002, 1945.
13. Foresman J B, Keith TA, Wiberg K B, Snoonian J, Friesch M J, J Phys Chem, 100, 1996, 16098.
16.(a) Schuurmann G, Cossi M, Barone V, Tomasi J, J Phys Chem, 102, 1998, 6706.
(b) Cammi R, Tomasi J, J Comput Chem, 16, 1995, 1449.
(c) Li H, Hains WA, everts E J, Robertson DA, Jensen H J, JPhys Chem B, 106, 2002, 3486
(d) Sullivan J J, Jones A D, Tanj K K, J Chem Inf Computu Sci, 40, 2000, 1113.
(e) Parajuli R, Medhi C, J Chem Sciences, 116, 4, 2004, 235.
14. Frisch M J, Trucks G W, Schlegel H B, Gill P M W, Johnson B G, Robb M, Cheoseman J R, Keith T, Petersson G A, Montgomery J A, Raghavachari K, Al-Laham M A, Zakrzewaki V G, Ortiz J V, Foresmann J B, Ciolowski J, Stefanov B B, Namayakkara A, Challacombe M, Peng C Y, Ayala PY, Chen W, Wong M W, Andres JL, Replogle E S, Gomperts R, Martin RL, Fox D J, Binkley J S, Defrees D J, Baker J, Stewart J P, Head-Gordon M, Gonzalez C, Pople J A, 1995. Gaussian 94; Gaussian Inc, Pittburgh, PA, 1995.
