List of Tables

-

i.

· •

	Number and Name of Tables	Page No.
1.	Table 3.1- Computed Interaction Energies of some stacked models of 9-aminoacridin	e
	(AD) with individual bases (A, C, G and U)	28
2.	Table 3.2a- Computed Interaction Energies of some stacked models of 9-aminoacrid	ine
	(AD) with DNA basepair AU	28
3.	Table 3.2b- Computed Interaction Energies of some stacked models of 9-aminoacrid	ine
	(AD) with DNA basepair GC	28
4.	Table 3.3a- Computed Interaction Energies for stacked models of 9-aminoacredine	
	binding through minor groove to AT base-pair at different levels of theory (π - π Interaction	on) 29
5.	Table 3.3b- Computed Interaction Energies for stacked models of 9-aminoacredine,	
	binding through major groove to AT base-pair at different levels of theory (π - π interaction	on) 29
6.	Table 3.4a- Computed Interaction Energies for stacked models of 9-aminoacredine b	inding
	through major groove to GC base-pair at different levels of theory (π - π interaction)	29
7.	Table 3.4b- Computed Interaction Energies for stacked models of 9-aminoacredine b	oin ding
	through minor groove to GC base-pair at different levels of theory (π - π interaction)	30
8.	Table 3.5- Calculated Interaction energies for stacked portion of optimum models of	
	9-aminoacridine stacked with AT and GC base pair using MP2/6-31G.	30
9.	Table 4.1a – Construction of various stacking models $(\pi - \pi \text{ stacking})$	
	of 9-aminoazaacridine-4-carboxamide (AZN) and AT base pair.	46
10.	Table 4.1b - Construction of various stacking models (π - π stacking)	
	of 9-aminoazaacridine-4-carboxamide (AZN) and GC base pair.	47
11.	Table 4.1c - Construction of various stacking models of	
	9-aminoazaacridine-4-carboxamide (AZN) and base pair Stacking.	47
12.	Table 4.2a- Interaction energies of Benzene-Benzene stacking in different basis sets	
	and theory at vertical separation of 3.6A.	47
13.	Table 4.2b – Interaction energies of Benzeno-Pyridine stacking in different basis sets	
	and theory at vertical separation of 3.6A.	48
14.	Table 4.3 – The computed Interaction Energies of the optimum stacked models of	
	9-aminoazaachdine-4-carboxamide (AZN) and GC base pair at different theory level.	40
45	(in KCal/mol)	48
13.	Table 4.4 - The computed Interaction Energies of the optimum stacked models of	
	9-aninoazaachuine-4-carboxamide (AZN) and AT base pair at unierent meory level.	40
40	(III Kodumol) Table 4 Fe Comparison of Internation Energies for different by position on	40
10.	Paper 4.5a - Comparison of Interaction Energies for different NX position of	
	statisticazadi killio-4-carboxalikue (Aziv) statikeu wiul Ali base-pali wiul side cilalii at	40
47	Table 4.5h - Comparison of interaction energies for different Ny position on	40
17.	Qaminoazaanidina. A corthoyamida (AZN) stacked with AT hasa-nair with side chain at	×
	maior amovae (HE/8-31G) (in k cal/mol)	Ø
19	Table 4.6a . Comparison of interaction energies for different Ny position on	-70
10.	9. aminoazaactitine_4.carboxamide (A7N) stacked with GC base-bair with side chain a	ŧ
	mator grooves (HE/6-31G) (in k cal/mol)	49

	Number and Name of Tables	Page No.
19.	Table 4.6b - Comparison of interaction energies for different Nx position on	
	9-aminoazaacridine-4-carboxamide (AZN) stacked with GC base-pair with side chair) at
	minor grooves (HF/6-31G) (in k cal/mol)	50
20.	Table 4.7a - Variation of Net Charge on Nx of optimum stacked structure of AT and	
	9-aminoazaacridine-4-carboxamide (AZN).	50
21.	Table 4.7b - Variation of Net Charge on Nx of optimum stacked structure of GC	
	and 9-aminoazaacridine-4-carboxamide (AZN).	50
22.	Table 5.1a – Construction of various stacking models (π - π stacking) of drugs and	
	AT base pair.	68
23.	Table 5.1b – Construction of various stacking models (π - π stacking) of	
	drugs and GC base pair.	68
24.	Table 5.1c - Modeling scheme for Stacking of substituents and base pair Stacking	. 69
25.	Table 5.2 - The computed Interaction energies of AZO, AZN and AZCI	
	with Nx at different position and AT base pair. (in k cal/mol)	69
26.	Table 5.3 – The computed Interaction energies of AZO, AZN and AZCI	
	with Nx at different position and GC base pair. (in k cal/mol)	69
27.	Table 5.4a - Variation of Net Charge on Nx of optimum stacked	
	structure of AT and 9-aminoazaacridine-4-carboxamide (AZN).	70
28.	Table 5.4b - Variation of Net Charge on Nx of optimum stacked	
	structure of GC and 9-aminoazaacridine-4-carboxamide (AZN).	70
29.	Table 5.5a - Variation of Net Charge on Nx of optimum stacked structure	
	of AT and 9-oxoazaacridone-4-carboxamide (AZO).	70
30.	Table 5.5b - Variation of Net Charge on Nx of optimum stacked structure	
	of GC and 9-oxoazaactidone-4-carboxamide (AZO).	70
31.	Table 5.6a - Variation of Net Charge on Nx of optimum stacked structure	
	of AT and 9-chloroazaacridine-4-carboxamide (AZCI) stacking.	71
32.	Table 5.6b - Variation of Net Charge on Nx of optimum stacked structure	
	of GC and 9-chloroazaacridine-4-carboxamide (AZCI) stacking.	71
33.	Table 5.7a - The computed Interaction Energies of the optimum stacked models of	ſ
	9-oxoazaacridone-4-carboxamide (AZO) and AT base pair at different level of theory	<i>ı</i> . 71
34	Table 5.7b - The computed Interaction Energies of the optimum stacked models of	f
	9-aminoazaacridine-4-carboxamide (AZN) and AT base pair at different level of the	жу. 71
35.	Table 5.7c - The computed Interaction Energies of the optimum stacked models of	f
	9-chloroazaacridine-4-carboxamide (AZCI) and AT base pair at different level of the	ory. 72
36,	Table 5.8a - The computed Interaction Energies of the optimum stacked models of	of
	9-oxoazaacridone-4-carboxamide (AZO) and GC base pair at different level of theorem	ry. 72
37.	Table 5.8b - The computed Interaction Energies of the optimum stacked models of	nf
	9-aminoazaacridine-4-carboxamide (AZN) and AT base pair at different level of the	xy. 72
38	. Table 5.8c - The computed Interaction Energies of the optimum stacked models of	of
	9-aminoazaacridine-4-carboxamide (AZN) and AT base pair at different level of the	ory. 73
39	. Table 5.9 - The computed Interaction Energies of the optimum stacked models of	C9
		70

.

.

Vİİ

,

- .

		v
	Number and Name of Tables	Page No.
40.	Table 5.10 - The computed Interaction Energies of the optimum stacked models of C	9
	substituent of AZO's, AZN's and AZCI's with GC base pair at different level of theory.	73
41.	Table 6.1a - The computed Interaction Energies of the optimum stacked models of	
	9-anilinoacridine (ANLI) with AT base pair.	82
42.	Table 6.1b - The computed Interaction Energies of the optimum stacked models of	
	9-anifinoacridine (ANLI) with GC base pair.	82
43,	Table 6.2 - The computed Interaction Energies of the optimum stacked models of	
	9-anilinoacridine (ANLI) with AT and GC base pair for the aniline group staying towards mina	or
	and major grooves.	82
44.	Table 6.3a - Variation of Mulliken net charges on heavy atoms of 9-anilinoacridine (ANLI)	
	in optimum stacked structure with AT base pair.	82
45.	Table 6.3b - Variation of Mulliken net charges on heavy atoms of 9-anilinoacridine (ANLI)	,
	in optimum stacked structure with GC base pair.	83
46.	Table 7.1 - Comparison of the Interaction Energies (HF/6-31G) of Chromophore	
	(AZO, AZN, AZCI) with one and two base pairs at stacking distance of 3.6 A	92
47.	Table 7.2a- The optimum stacking distance of drugs with two AT base pair	93
48	. Table 7.2b- The optimum stacking distance of drugs with two GC base pair	93
49	. Table 7.3- Variation of Interaction Energies with Rotation of Drug molecule (AZO8)	
	between Base pair (GC-GC)	93
50.	Table 8.1- Computed proton affinities (PA) and corresponding pK 's for the most basic	
	sites of 9-oxoazaacridone-4-carboxamide (AZO).	106
51.	Table 8.2- Computed proton affinities (PA) and corresponding pK 's for the most basic	
	site of 9-chloroazaacridine-4-carboxamide (AZCI).	106
52.	Table 8.3- Computed proton affinities (PA) and corresponding pK 's for most basic	
	site of 9-aminoazaacridine-4-carboxamide (AZN).	107
53.	Table 8.4- The distance of proton from the most basic site and intra molecular H-bond that	
	observed in some protonated form, along with out of plane angle of O atom in protonated Az	2CI 107
54.	Table 8.5- The distance of proton from the most basic site and intra molecular H-bond that	
	observed in some protonated form, along with out of plane angle of O atom in protonated Az	ZÓ 107
55.	Table 8.6- The distance of proton from the most basic site and intra molecular H-bond that	
	observed in some protonated form, along with out of plane angle of O atom in protonated Az	ZN 108
56.	Table 8.7- The computed Zero point energies and Solvation energies of Free and	
	Protonated 9-chloroazaacridine-4-carboxamides (AZCI) for the most basic sites.	108
57.	Table 8.8- The computed Zero point energies and Solvation energies of Free and	
	Protonated 9-oxoazaacridone-4-carboxamides (AZO) for the most basic sites.	108
58.	Table 8.9 - The computed Zero point energies and Solvation energies of Free and	
	Protonated 9-aminoazaacridone-4-carboxamides (AZN) for the most basic sites.	108
59 .	Table 9.1- The computed proton affinities (PA), pKa values and solvation energies of	
	9-aminoacridine and 9-aminoazaacridine.	116
60	Table 9.2- Variation of interaction enemies with protonation of Acridine and base pair sta	acking 116

. 1

.

· ,
